dc.creatorAlberti, F.
dc.creatorBaake, E.
dc.creatorLetter Restuccia, Ian Patrick
dc.creatorMartínez Aguilera, Servet
dc.date.accessioned2021-12-16T17:47:19Z
dc.date.accessioned2022-01-27T21:19:12Z
dc.date.available2021-12-16T17:47:19Z
dc.date.available2022-01-27T21:19:12Z
dc.date.created2021-12-16T17:47:19Z
dc.date.issued2021
dc.identifierJournal of Mathematical Biology (2021) 82:41
dc.identifier10.1007/s00285-021-01584-4
dc.identifierhttps://repositorio.uchile.cl/handle/2250/183257
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3315478
dc.description.abstractWe consider the discrete-time migration–recombination equation, a deterministic, nonlinear dynamical system that describes the evolution of the genetic type distribution of a population evolving under migration and recombination in a law of large numbers setting.We relate this dynamics (forward in time) to aMarkov chain, namely a labelled partitioning process, backward in time. This way, we obtain a stochastic representation of the solution of the migration–recombination equation. As a consequence, one obtains an explicit solution of the nonlinear dynamics, simply in terms of powers of the transition matrix of the Markov chain. The limiting and quasi-limiting behaviour of the Markov chain are investigated, which gives immediate access to the asymptotic behaviour of the dynamical system. We finally sketch the analogous situation in continuous time.
dc.languageen
dc.publisherSpringer Heidelberg
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States
dc.sourceJournal of Mathematical Biology
dc.subjectMigration–recombination equation
dc.subjectAncestral recombination graph
dc.subjectDuality
dc.subjectLabelled partitioning process
dc.subjectQuasi-stationarity
dc.subjectHaldane linearisation
dc.titleSolving the migration–recombination equation from a genealogical point of view
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución