dc.creatorCament Riveros, Leonardo
dc.creatorCorrea Villanueva, Javier
dc.creatorAdams, Martin
dc.creatorPérez Flores, Claudio
dc.date.accessioned2021-01-21T19:19:58Z
dc.date.available2021-01-21T19:19:58Z
dc.date.created2021-01-21T19:19:58Z
dc.date.issued2020
dc.identifierSignal Processing 176 (2020) 107714
dc.identifier10.1016/j.sigpro.2020.107714
dc.identifierhttps://repositorio.uchile.cl/handle/2250/178284
dc.description.abstractA Random Finite Set (RFS) based multi-target filter is proposed, which utilizes a labeled Multi-Bernoulli distribution to model the multi-target state, together with a Poisson RFS distribution to model target birth. Referred to as the Poisson Labeled Multi-Bernoulli (PLMB) filter, results show that, in simulated environments, it outperforms the Labeled Multi-Bernoulli (LMB), δ-Generalized Labeled Multi-Bernoulli ( δ-GLMB) and Labeled Multi-Bernoulli Mixtures (LMBM) filters under general target birth scenarios. An algorithm based on a histogram of Gibbs samples is also proposed which efficiently generates a posterior labeled Multi-Bernoulli distribution in a simple manner using a histogram of the state-measurement asso- ciations obtained by a Gibbs sampler. The histogram approach is readily applicable to all Multi-Bernoulli based filters and is demonstrated in the form of the Histogram-PLMB (HPLMB) filter.
dc.languageen
dc.publisherElsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceSignal Processing
dc.subjectFinite Set Statistics
dc.subjectTarget Tracking
dc.subjectMulti-Bernoulli
dc.subjectPoisson birth model
dc.titleThe histogram Poisson, lab ele d multi-Bernoulli multi-target tracking filter
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución