dc.creatorÁlvarez, Edgardo
dc.creatorCastillo, Samuel
dc.creatorPinto Jiménez, Manuel
dc.date.accessioned2020-05-08T14:16:28Z
dc.date.available2020-05-08T14:16:28Z
dc.date.created2020-05-08T14:16:28Z
dc.date.issued2020
dc.identifierMath Meth Appl Sci. 2020;43:305–319
dc.identifier10.1002/mma.5880
dc.identifierhttps://repositorio.uchile.cl/handle/2250/174580
dc.description.abstractIn this paper, we study a new class of functions, which we call (omega, c)-asymptotically periodic functions. This collection includes asymptotically periodic, asymptotically antiperiodic, asymptotically Bloch-periodic, and unbounded functions. We prove that the set conformed by these functions is a Banach space with a suitable norm. Furthermore, we show several properties of this class of functions as the convolution invariance. We present some examples and a composition result. As an application, we prove the existence and uniqueness of (omega, c)-asymptotically periodic mild solutions to the first-order abstract Cauchy problem on the real line. Also, we establish some sufficient conditions for the existence of positive (omega, c)-asymptotically periodic solutions to the Lasota-Wazewska equation with unbounded oscillating production of red cells.
dc.languageen
dc.publisherWiley
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceMathematical Methods in the Applied Sciences
dc.subjectAntiperiodic
dc.subjectCompleteness
dc.subjectConvolution invariance
dc.subjectPeriodic
dc.title(omega, c)-asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución