dc.creatorAllen, Peter
dc.creatorBöttcher, Julia
dc.creatorSkokan1, Jozef
dc.creatorStein, Maya
dc.date.accessioned2020-04-23T15:13:52Z
dc.date.available2020-04-23T15:13:52Z
dc.date.created2020-04-23T15:13:52Z
dc.date.issued2020
dc.identifierRandom Struct Alg. 2020;56:306–338.
dc.identifier1042-9832
dc.identifier10.1002/rsa.20851
dc.identifierhttps://repositorio.uchile.cl/handle/2250/174068
dc.description.abstractAdvancing the sparse regularity method, we prove one-sided and two-sided regularity inheritance lemmas for subgraphs of bijumbled graphs, improving on results of Conlon, Fox, and Zhao. These inheritance lemmas also imply improved H-counting lemmas for subgraphs of bijumbled graphs, for some H.
dc.languageen
dc.publisherWiley
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceRandom Structures & Algorithms
dc.subjectCounting lemma
dc.subjectPseudorandom graphs
dc.subjectRegularity inheritance
dc.subjectSparse regularity lemma
dc.subjectSzemeredi's regularity lemma
dc.titleRegularity inheritance in pseudorandom graphs
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución