dc.creatorMartínez, María E.
dc.date.accessioned2020-07-14T15:30:46Z
dc.date.available2020-07-14T15:30:46Z
dc.date.created2020-07-14T15:30:46Z
dc.date.issued2020
dc.identifierNonlinearity 33 (2020) 1156–1182
dc.identifier10.1088/1361-6544/ab591c
dc.identifierhttps://repositorio.uchile.cl/handle/2250/175954
dc.description.abstractWe consider the long time asymptotics of (not necessarily small) odd solutions to the nonlinear Schrödinger equation with semi-linear and nonlocal Hartree nonlinearities, in one dimension of space. We assume data in the energy space H1(R) only, and we prove decay to zero in compact regions of space as time tends to infinity. We give three different results where decay holds: semilinear NLS, NLS with a suitable potential, and defocusing Hartree. The proof is based on the use of suitable virial identities, in the spirit of nonlinear Klein– Gordon models (Kowalczyk et al 2017 Lett. Math. Phys. 107 921–31), and covers scattering sub, critical and supercritical (long range) nonlinearities. No spectral assumptions on the NLS with potential are needed.
dc.languageen
dc.publisherIOP Publishing
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceNonlinearity
dc.subjectLong-range
dc.subjectScattering
dc.subjectSchrödinger
dc.subjectHartree
dc.subjectCoulomb potential
dc.subjectDecay
dc.titleDecay of small odd solutions for long range Schrödinger and Hartree equations in one dimension
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución