dc.creator | Auffarth, Robert | |
dc.creator | Codogni, Giulio | |
dc.date.accessioned | 2020-05-08T22:13:43Z | |
dc.date.available | 2020-05-08T22:13:43Z | |
dc.date.created | 2020-05-08T22:13:43Z | |
dc.date.issued | 2020 | |
dc.identifier | Journal of Algebra 548 (2020) 153–161 | |
dc.identifier | 10.1016/j.jalgebra.2019.11.042 | |
dc.identifier | https://repositorio.uchile.cl/handle/2250/174612 | |
dc.description.abstract | We construct families of principally polarized abelian varieties whose theta divisor is irreducible and contains an abelian subvariety. These families are used to construct examples when the Gauss map of the theta divisor is only generically finite and not finite. That is, the Gauss map in these cases has at least one positive-dimensional fiber. We also obtain lower-bounds on the dimension of Andreotti-Mayer loci. | |
dc.language | en | |
dc.publisher | Elsevier | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
dc.source | Journal of Algebra | |
dc.subject | Principally polarized abelian varieties | |
dc.subject | Gauss map | |
dc.subject | Schottky problem | |
dc.title | Theta divisors whose Gauss map has a fiber of positive dimension | |
dc.type | Artículo de revista | |