dc.creatorAuffarth, Robert
dc.creatorCodogni, Giulio
dc.date.accessioned2020-05-08T22:13:43Z
dc.date.available2020-05-08T22:13:43Z
dc.date.created2020-05-08T22:13:43Z
dc.date.issued2020
dc.identifierJournal of Algebra 548 (2020) 153–161
dc.identifier10.1016/j.jalgebra.2019.11.042
dc.identifierhttps://repositorio.uchile.cl/handle/2250/174612
dc.description.abstractWe construct families of principally polarized abelian varieties whose theta divisor is irreducible and contains an abelian subvariety. These families are used to construct examples when the Gauss map of the theta divisor is only generically finite and not finite. That is, the Gauss map in these cases has at least one positive-dimensional fiber. We also obtain lower-bounds on the dimension of Andreotti-Mayer loci.
dc.languageen
dc.publisherElsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceJournal of Algebra
dc.subjectPrincipally polarized abelian varieties
dc.subjectGauss map
dc.subjectSchottky problem
dc.titleTheta divisors whose Gauss map has a fiber of positive dimension
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución