Artículo de revista
Smooth semi-Lipschitz functions and almost isometries between Finsler manifolds
Fecha
2020Registro en:
Journal OF Functional Analysis Volumen: 279 Número: 8 Número de artículo: 108662 Nov 1 2020
10.1016/j.jfa.2020.108662
Autor
Daniilidis, Aris
Jaramillo, Jesús
Venegas M., Francisco
Institución
Resumen
The convex cone SC1
SLip(X) of real-valued smooth semi-Lipschitz functions on a Finsler
manifold X is an order-algebraic structure that captures both the differentiable and the quasi-metric
feature of X. In this work we show that the subset of smooth semi-Lipschitz functions of constant
strictly less than 1, denoted SC1
1− (X), can be used to classify Finsler manifolds and to characterize
almost isometries between them, in the lines of the classical Banach-Stone and Mykers-Nakai theorems.