dc.creatorLecaros, R.
dc.creatorLópez Ríos, J.
dc.creatorOrtega Palma, Jaime
dc.creatorZamorano, S.
dc.date.accessioned2021-04-06T21:35:00Z
dc.date.available2021-04-06T21:35:00Z
dc.date.created2021-04-06T21:35:00Z
dc.date.issued2020
dc.identifierInverse Problems Volumen: 36 Número: 11 Número de artículo: 115002 (2020)
dc.identifier10.1088/1361-6420/abafee
dc.identifierhttps://repositorio.uchile.cl/handle/2250/178963
dc.description.abstractIn this article we deal with a class of geometric inverse problem for bottom detection by one single measurement on the free surface in water-waves. We found upper and lower bounds for the size of the region enclosed between two different bottoms, in terms of Neumann and/or Dirichlet data on the free surface. Starting from the general water-waves system in bounded domains with side walls, we manage to formulate the problem in terms of the Dirichlet to Neumann operator and thus, as an elliptic problem in a bounded domain with Neumann homogeneous condition on the rigid boundary. Then we study the properties of the Dirichlet to Neumann map and analyze the called method of size estimation.
dc.languageen
dc.publisherIOP
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceInverse Problems
dc.subjectFree boundary value problems
dc.subjectWater-waves equations
dc.subjectGeometric inverse problems
dc.subjectStability
dc.subjectSize estimate
dc.subjectNon-local operators
dc.titleThe stability for an inverse problem of bottom recovering in water-waves
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución