dc.creatorLaplaza, Rubén
dc.creatorCárdenas Valencia, Carlos
dc.creatorChaquin, Patrick
dc.creatorContreras García, Julia
dc.creatorAyers, Paul W.
dc.date.accessioned2021-06-15T21:32:21Z
dc.date.available2021-06-15T21:32:21Z
dc.date.created2021-06-15T21:32:21Z
dc.date.issued2020
dc.identifierJ Comput Chem. 2021;42:334–343
dc.identifier10.1002/jcc.26459
dc.identifierhttps://repositorio.uchile.cl/handle/2250/180131
dc.description.abstractThe bonding and antibonding character of individual molecular orbitals has been previously shown to be related to their orbital energy derivatives with respect to nuclear coordinates, known as dynamical orbital forces. Albeit usually derived from Koopmans' theorem, in this work we show a more general derivation from conceptual DFT, which justifies application in a broader context. The consistency of the approach is validated numerically for valence orbitals in Kohn–Sham DFT. Then, we illustrate its usefulness by showcasing applications in aromatic and antiaromatic systems and in excited state chemistry. Overall, dynamical orbital forces can be used to interpret the results of routine ab initio calculations, be it wavefunction or density based, in terms of forces and occupations.
dc.languageen
dc.publisherWiley
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceJournal of Computational Chemistry
dc.subjectConceptual density functional theory
dc.subjectDensity functional theory
dc.subjectDynamic orbital forces
dc.subjectNuclear forces
dc.subjectNuclear Fukui function
dc.titleOrbital energies and nuclear forces in DFT: Interpretation and validation
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución