dc.contributorRuiz García, Rafael
dc.contributorMeruane Naranjo, Viviana
dc.contributorCalderón Muñoz, Williams
dc.creatorPeralta Braz, Patricio Ignacio
dc.date.accessioned2020-06-11T21:29:39Z
dc.date.available2020-06-11T21:29:39Z
dc.date.created2020-06-11T21:29:39Z
dc.date.issued2020
dc.identifierhttps://repositorio.uchile.cl/handle/2250/175406
dc.description.abstractThe model updating of the electro-mechanical properties of Piezoelectric Energy Harvesters (PEHs) using experimental data within a Bayesian inference setting is discussed. The implementation requires: a predictive model for the harvester response; an assumption for its prediction error; a prior multivariate probabilistic density function for the electromechanical properties; and experimental measurements of the harvester response. Different approaches are compared with respect to the Bayesian model updating, including point estimates of the updated properties based on Maximum a Posteriori (MAP) and Maximum Likelihood Estimates (MLE), as well as a full description of the posterior density for the model characteristics, obtained through a Transitional Markov Chain Monte Carlo approach. A model class selection implementation is also discussed that allows for the consideration of some PEH properties as either deterministic or aleatoric (uncertain) variables. The overall framework offers an elegant approach to calibrate PEH numerical/analytical model or identify variability trends for the PEH manufacturing process.
dc.languageen
dc.publisherUniversidad de Chile
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.subjectPropiedades eléctricas
dc.subjectTeoría bayesiana de decisiones estadísticas
dc.subjectColectores de energía piezoeléctricos
dc.titleModel parameter identification and model class selection in piezoelectric energy harvester based on bayesian inference
dc.typeTesis


Este ítem pertenece a la siguiente institución