dc.creatorBerres, Stefan
dc.creatorRuiz-Baier, Ricardo
dc.date2011
dc.date2021-04-30T16:33:00Z
dc.date2021-04-30T16:33:00Z
dc.date.accessioned2021-06-14T22:08:41Z
dc.date.available2021-06-14T22:08:41Z
dc.identifierNONLINEAR ANALYSIS-REAL WORLD APPLICATIONS,Vol.12,2888-2903,2011
dc.identifierhttp://repositoriodigital.uct.cl/handle/10925/2997
dc.identifier10.1016/j.nonrwa.2011.04.014
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3301522
dc.descriptionAn epidemic model is formulated by a reaction-diffusion system where the spatial pattern formation is driven by cross-diffusion. The reaction terms describe the local dynamics of susceptible and infected species, whereas the diffusion terms account for the spatial distribution dynamics. For both self-diffusion and cross-diffusion, nonlinear constitutive assumptions are suggested. To simulate the pattern formation two finite volume formulations are proposed, which employ a conservative and a non-conservative discretization, respectively. An efficient simulation is obtained by a fully adaptive multiresolution strategy. Numerical examples illustrate the impact of the cross-diffusion on the pattern formation. (c) 2011 Elsevier Ltd. All rights reserved.
dc.languageen
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.sourceNONLINEAR ANALYSIS-REAL WORLD APPLICATIONS
dc.subjectEpidemic model
dc.subjectReaction-diffusion equation
dc.subjectCross-diffusion
dc.subjectFully adaptive multiresolution
dc.titleA fully adaptive numerical approximation for a two-dimensional epidemic model with nonlinear cross-diffusion
dc.typeArticle


Este ítem pertenece a la siguiente institución