dc.date2008
dc.date2012-02-24T03:18:40Z
dc.date2012-02-24T03:18:40Z
dc.date2012-02-24
dc.date.accessioned2021-06-14T22:08:39Z
dc.date.available2021-06-14T22:08:39Z
dc.identifierAIP Conference Proceedings, Vol. 1048, 575-579, 2008
dc.identifierhttps://hdl.handle.net/10925/682
dc.identifier10.1063/1.2990990
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3301509
dc.descriptionThis contribution concerns with the construction of a simple and effective technology for the problem of exact integration of interpolation polynomials arising while discretizing partial differential equations by the finite volume element method on simplicial meshes. It is based on the element-wise representation of the local shape functions through barycentric coordinates (barycentric interpolation) and the introducing of classes of integration formulas for the exact integration of generic monomials of barycentric coordinates over the geometrical shapes defined by a barycentric dual mesh. Numerical examples are presented that illustrate the validity of the technology
dc.formatPDF
dc.formatapplication/pdf
dc.languageen
dc.sourceAIP Conference Proceedings
dc.subjectCoordenadas baricéntricas
dc.titleBarycentric interpolation and exact integration formulas for the finite volume element method
dc.typeArtículo de Revista


Este ítem pertenece a la siguiente institución