dc.creatorBerres, Stefan
dc.creatorSimos, TE
dc.creatorPsihoyios, G
dc.creatorTsitouras, C
dc.date2008
dc.date2021-04-30T16:25:23Z
dc.date2021-04-30T16:25:23Z
dc.date.accessioned2021-06-14T22:08:08Z
dc.date.available2021-06-14T22:08:08Z
dc.identifierNUMERICAL ANALYSIS AND APPLIED MATHEMATICS,Vol.1048,76-79,2008
dc.identifierhttp://repositoriodigital.uct.cl/handle/10925/2502
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3301313
dc.descriptionIn this contribution the identification of a piecewise linear diffusion function in a nonlinear convection-diffusion equation is presented. This inverse problem arises at the parameter identification for a sedimentation-consolidation process of flocculated suspensions in a batch settling experiment. The identification method avoids the minimization of a cost function with the method of least squares. Instead, in each computational time step of the finite difference scheme, the unknown diffusion function is extended by appending a new linear interval to the piecewise linear polygon. The required information is exclusively obtained from an overspecified boundary condition and by employing the discrete solution of the finite difference scheme for the direct problem. The advantage of the proposed approach is its low computational cost.
dc.languageen
dc.publisherAMER INST PHYSICS
dc.sourceNUMERICAL ANALYSIS AND APPLIED MATHEMATICS
dc.subjectParameter identification
dc.subjectconvection-diffusion equation
dc.subjectfinite-difference scheme
dc.subjectsedimentation-consolidation process
dc.titleIdentification of Piecewise Linear Diffusion Function in Convection-Diffusion Equation with Overspecified Boundary
dc.typeMeeting


Este ítem pertenece a la siguiente institución