dc.creatorAstorga, Juan M.
dc.creatorReyes, Jimmy
dc.creatorSantoro, Karol, I
dc.creatorVenegas, Osvaldo
dc.creatorGomez, Hector W.
dc.date2020
dc.date2021-04-30T16:59:15Z
dc.date2021-04-30T16:59:15Z
dc.date.accessioned2021-06-14T22:05:47Z
dc.date.available2021-06-14T22:05:47Z
dc.identifierMATHEMATICS,Vol.8,,2020
dc.identifierhttp://repositoriodigital.uct.cl/handle/10925/3774
dc.identifier10.3390/math8091537
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3300410
dc.descriptionThis article introduces an extension of the Power Muth (PM) distribution for modeling positive data sets with a high coefficient of kurtosis. The resulting distribution has greater kurtosis than the PM distribution. We show that the density can be represented based on the incomplete generalized integro-exponential function. We study some of its properties and moments, and its coefficients of asymmetry and kurtosis. We apply estimations using the moments and maximum likelihood methods and present a simulation study to illustrate parameter recovery. The results of application to two real data sets indicate that the new model performs very well in the presence of outliers.
dc.languageen
dc.publisherMDPI
dc.sourceMATHEMATICS
dc.subjectgeneralized integro-exponential function
dc.subjectkurtosis
dc.subjectmaximum likelihood
dc.subjectpower muth distribution
dc.subjectslash distribution
dc.titleA Reliability Model Based on the Incomplete Generalized Integro-Exponential Function
dc.typeArticle


Este ítem pertenece a la siguiente institución