dc.date2003
dc.date2012-02-25T22:50:15Z
dc.date2012-02-25T22:50:15Z
dc.date2012-02-25
dc.date.accessioned2021-06-14T22:05:14Z
dc.date.available2021-06-14T22:05:14Z
dc.identifierSemigroup Forum, Vol. 66, N°1, 18-42, 2003
dc.identifierhttps://hdl.handle.net/10925/751
dc.identifier10.1007/s002330010155
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3300194
dc.descriptionGiven a finite set A and a distinguished function f: A → A, we study the set of all functions g: A → A that are continuous for all topologies for which f is continuous. The main result is a characterization of the functions f such that this set is trivial, that is, contains only the constant functions and the iterates of f.
dc.formatPDF
dc.formatapplication/pdf
dc.languageen
dc.sourceSemigroup Forum
dc.subjectAlgebra
dc.subjectFunciones algebraicas
dc.titleTopologically inseparable functions I: Finitary case
dc.typeArtículo de Revista


Este ítem pertenece a la siguiente institución