dc.creatorKirchhoff, K.
dc.creatorCapurro, Daniel
dc.creatorTurner, A. M.
dc.date.accessioned2020-01-14T01:28:59Z
dc.date.available2020-01-14T01:28:59Z
dc.date.created2020-01-14T01:28:59Z
dc.date.issued2014
dc.identifier10.1007/s10590-013-9140-x
dc.identifier0922-6567
dc.identifierhttps://doi.org/10.1007/s10590-013-9140-x
dc.identifierhttps://repositorio.uc.cl/handle/11534/27455
dc.description.abstractDespite much research on machine translation (MT) evaluation, there is surprisingly little work that directly measures users' intuitive or emotional preferences regarding different types of MT errors. However, the elicitation and modeling of user preferences is an important prerequisite for research on user adaptation and customization of MT engines. In this paper we explore the use of conjoint analysis as a formal quantitative framework to assess users' relative preferences for different types of translation errors. We apply our approach to the analysis of MT output from translating public health documents from English into Spanish. Our results indicate that word order errors are clearly the most dispreferred error type, followed by word sense, morphological, and function word errors. The conjoint analysis-based model is able to predict user preferences more accurately than a baseline model that chooses the translation with the fewest errors overall. Additionally we analyze the effect of using a crowd-sourced respondent population versus a sample of domain experts and observe that main preference effects are remarkably stable across the two samples
dc.languageen
dc.rightsacceso restringido
dc.subjectEvaluation
dc.subjectMachine translation
dc.subjectPreference elicitation
dc.subjectUser modeling
dc.subjectComputer aided language translation
dc.subjectStatistical methods
dc.subjectBaseline models
dc.subjectConjoint analysis
dc.subjectMachine translations
dc.subjectQuantitative frameworks
dc.subjectWord order errors
dc.subjectErrors
dc.titleA conjoint analysis framework for evaluating user preferences in machine translation
dc.typeartículo


Este ítem pertenece a la siguiente institución