dc.creatorWestoby, Jennifer.
dc.creatorHerrera, Marcela S.
dc.creatorFerguson Smith, Anne C.
dc.creatorHemberg, Martin.
dc.date.accessioned2019-10-17T18:22:20Z
dc.date.available2019-10-17T18:22:20Z
dc.date.created2019-10-17T18:22:20Z
dc.date.issued2018
dc.identifierGenome Biology. 2018 Nov 07;19(1):191
dc.identifierhttps://repositorio.uc.cl/handle/11534/26836
dc.identifier10.1186/s13059-018-1571-5
dc.description.abstractAbstract Single-cell RNA-seq has the potential to facilitate isoform quantification as the confounding factor of a mixed population of cells is eliminated. However, best practice for using existing quantification methods has not been established. We carry out a benchmark for five popular isoform quantification tools. Performance is generally good for simulated data based on SMARTer and SMART-seq2 data. The reduction in performance compared with bulk RNA-seq is small. An important biological insight comes from our analysis of real data which shows that genes that express two isoforms in bulk RNA-seq predominantly express one or neither isoform in individual cells.Abstract Single-cell RNA-seq has the potential to facilitate isoform quantification as the confounding factor of a mixed population of cells is eliminated. However, best practice for using existing quantification methods has not been established. We carry out a benchmark for five popular isoform quantification tools. Performance is generally good for simulated data based on SMARTer and SMART-seq2 data. The reduction in performance compared with bulk RNA-seq is small. An important biological insight comes from our analysis of real data which shows that genes that express two isoforms in bulk RNA-seq predominantly express one or neither isoform in individual cells.Abstract Single-cell RNA-seq has the potential to facilitate isoform quantification as the confounding factor of a mixed population of cells is eliminated. However, best practice for using existing quantification methods has not been established. We carry out a benchmark for five popular isoform quantification tools. Performance is generally good for simulated data based on SMARTer and SMART-seq2 data. The reduction in performance compared with bulk RNA-seq is small. An important biological insight comes from our analysis of real data which shows that genes that express two isoforms in bulk RNA-seq predominantly express one or neither isoform in individual cells.Abstract Single-cell RNA-seq has the potential to facilitate isoform quantification as the confounding factor of a mixed population of cells is eliminated. However, best practice for using existing quantification methods has not been established. We carry out a benchmark for five popular isoform quantification tools. Performance is generally good for simulated data based on SMARTer and SMART-seq2 data. The reduction in performance compared with bulk RNA-seq is small. An important biological insight comes from our analysis of real data which shows that genes that express two isoforms in bulk RNA-seq predominantly express one or neither isoform in individual cells.Abstract Single-cell RNA-seq has the potential to facilitate isoform quantification as the confounding factor of a mixed population of cells is eliminated. However, best practice for using existing quantification methods has not been established. We carry out a benchmark for five popular isoform quantification tools. Performance is generally good for simulated data based on SMARTer and SMART-seq2 data. The reduction in performance compared with bulk RNA-seq is small. An important biological insight comes from our analysis of real data which shows that genes that express two isoforms in bulk RNA-seq predominantly express one or neither isoform in individual cells.
dc.languageen
dc.rightsThe Author(s).
dc.titleSimulation-based benchmarking of isoform quantification in single-cell RNA-seq
dc.typeArtículo


Este ítem pertenece a la siguiente institución