dc.contributorBuitrago Horta, Edwin Ricardo, dir.
dc.creatorPeña Barajas, Mónica Milena
dc.date.accessioned2019-05-13T19:40:48Z
dc.date.available2019-05-13T19:40:48Z
dc.date.created2019-05-13T19:40:48Z
dc.date.issued2019
dc.identifierhttps://repository.udca.edu.co/handle/11158/1405
dc.identifierMV006 P25f 2019 (205512)
dc.description.abstractThe mare has for years been able to be a model of reproduction research of importance in veterinary medicine, over time great advances have been made on the hormonal and metabolic actions involved during the estrous cycle and crucially at the time of ovulation. The equine species has unique characteristics that make necessary the precise knowledge of the events that lead to the ovulation and maturation of the oocyte, all in order to achieve an adequate reproductive management. Close to ovulation, a series of hormonal and metabolic changes are carried out, which are crucial for the successful rupture of the follicular wall. This happens thanks to a gradual and progressive increase in luteinizing hormone (LH) and is characterized by the activation of several systems including endonucleases. This initial apoptotic surge occurs due to indiscriminate DNA degeneration and cell lysis, extravasation of blood cells, vascular collapse and local ischemia. In addition, proteolysis and cell removal cause a progressive narrowing of the ovarian wall, with the consequent formation of stigma and rupture of the follicular wall. Given the importance of the role played by hormonal and metabolic mechanisms in ovulation, it is necessary to collect information on the interaction between them, thus reconstructing a general panorama in order to understand the unleashing of this important event, thus being able to intervene in a way appropriate in the reproductive cycle of mares
dc.description.abstractLa yegua durante años ha logrado ser un modelo de investigación en la reproducción de importancia en veterinaria, con el tiempo se han logrado grandes avances sobre las acciones hormonales y metabólicas involucradas durante el ciclo estral y de manera crucial en el momento de la ovulación. La especie equina posee características únicas que hacen necesario el conocimiento preciso de los sucesos que conllevan a la ovulación y maduración del oocito, todo con el fin de lograr un adecuado manejo reproductivo. Cerca de la ovulación se ejercen una serie de cambios a nivel hormonal y metabólico que son cruciales para que se lleve a cabo de manera exitosa la ruptura de la pared folicular, este suceso se da gracias a un aumento gradual y progresivo de la hormona luteinizante (LH) y se caracteriza por la activación de varios sistemas incluyendo las endonucleasas. Esta oleada apoptótica inicial sucede por degeneración indiscriminada de ADN y lisis celular, extravasación de células sanguíneas, colapso vascular e isquemia local. Además, la proteólisis y la remoción celular causan un progresivo estrechamiento de la pared ovárica, con la consecuente formación del estigma y la ruptura de la pared folicular. Dada la importancia del papel que desempeñan los mecanismos hormonales y metabólicos en la ovulación se hace necesario recopilar información de la interacción entre ellos, reconstruyendo de esta manera un panorama general para poder entender el desencadenamiento de este importante evento, pudiendo de este modo intervenir de forma apropiada en el ciclo reproductivo de las yeguas
dc.languagespa
dc.publisherBogotá : Universidad de Ciencias Aplicadas y Ambientales, 2019
dc.publisherFacultad de Ciencias Agropecuarias
dc.publisherMedicina Veterinaria
dc.relationABDELNABY, E. A., ABO EL-MAATY, A. M. (2017). Dynamics of Folicular Blood Flow, Antrum Growth, and Angiogenic Mediators in Mares From Deviation to Ovulation. Journal of Equine Veterinary Science, 55, 51–59. doi:10.1016/j.jevs.2017.04.003
dc.relationABEL, M. H., WIDEN, A., WANG, X., HUHTANIEMI, I., PAKARINEN, P., KUMAR, T. R., CHRISTIAN, H. C. (2014). Pituitary Gonadotrophic Hormone Synthesis, Secretion, Subunit Gene Expression and Cell Structure in Normal and Follicle-Stimulating Hormone β Knockout, Follicle-Stimulating Hormone Receptor Knockout, Luteinising Hormone Receptor Knockout, Hypogonadal and. Journal of Neuroendocrinology, 26(11), 785–795. doi:10.1111/jne.12178
dc.relationANDRADE SOUZA, F., PÉREZ OSORIO, J., OLIVEIRA-SOUSA, A., RIBEIRO DO VALE FILHO, V., MARC, H., CHACÓN J., L. AND ARIAS. (2011). Foliculogénesis y ovulación en la especie equina, Rev. Med. Vet.: Bogotá (Colombia) N° 22: 43-50, https://doi.org/10.19052/mv.563
dc.relationASA, CHERYL S, GOLDFOOT, DAVID, GINTHER O. J. (1983). Assessment of the sexual behavior of pregnant mares. Hormones and Behavior, 17(4), 405–413. doi:10.1016/0018-506x(83)90049-1
dc.relationAURICH, C. (2011). Animal Reproduction Science, Reproductive cycles of horses, science directs, V 124 (3-4), 220–228. doi: 10.1016 / j.anireprosci.2011.02.005
dc.relationBASHIR, S. T., ISHAK, G. M., GASTAL, M. O., ROSER, J. F., GASTAL, E. L. (2016). Changes in intrafollicular concentrations of free IGF-1, activin A, inhibin A, VEGF, estradiol, and prolactin before ovulation in mares. Theriogenology, 85(8), 1491–1498. doi:10.1016/j.theriogenology.2016.01.01
dc.relationBLAIR, J. A., BHATTA, S., MCGEE, H., & CASADESUS, G. (2015). Luteinizing hormone: Evidence for direct action in the CNS. Hormones and Behavior, 76, 57–62. doi:10.1016/j.yhbeh.2015.06.020
dc.relationBRINSKO, S., BLANCHARD, T., VARNER, D., SCHUMACHER, J., LOVE, C., HINRICHS, K. AND HARTMAN, D. (2010). Manual of Reproduction Equine 3rd Edition, Reproductive Physiology of the Nonpregnant Mare, capitol 2: Edition Mosby (2011) eBook ISBN: 9780323168489
dc.relationCHECURA, C. M., BEG, M. A., PARRISH, J. J., & GINTHER, O. J. (2010). Functional relationships among intrafollicular insulin-like growth factor 1, circulatory gonadotropins, and development of the dominant follicle in mares. Animal Reproduction Science, 118(2-4), 270–278. doi:10.1016/j.anireprosci.2009.09.002
dc.relationDA SILVEIRA, J. C., CARNEVALE, E. M., WINGER, Q. A., BOUMA, G. J. (2014). Regulation of ACVR1 and ID2 by cell-secreted exosomes during follicle maturation in the mare. Reproductive Biology and Endocrinology, 12(1), 44. doi:10.1186/1477-7827-12-44
dc.relationDERAR, D., TAYA, K., WATANABE, G., & MIYAKE, Y.-I. (2011). Characterization of Immunoreactive IGF-I Pattern During the Peri-ovulatory Period of the Oestrous Cycle of Thoroughbred Mares and Its Relation to Other Hormones. Reproduction in Domestic Animals, 47(1), 151–156. doi:10.1111/j.1439-0531.2011.01819.x
dc.relationDESAULNIERS, A. T., CEDERBERG, R. A., LENTS, C. A., WHITE, B. R. (2017). Expression and Role of Gonadotropin-Releasing Hormone 2 and Its Receptor in Mammals. Frontiers in Endocrinology, doi: 10.3389/fendo.2017.00269
dc.relationDONADEU, F. X., WATSON, E. D. (2007). Seasonal changes in ovarian activity: Lessons learnt from the horse. Animal Reproduction Science, 100(3- 4), 225–242. doi:10.1016/j.anireprosci.2006.12.001
dc.relationEVANS, TIMOTHY J; CONSTANTINESCU, GHEORGHE M; GANJAM VENKATASESHU K. (2007), Clinical Reproductive Anatomy and Physiology of the CHAPTER 7, 2da edition pag 47-66
dc.relationEZCURRA, D., HUMAIDAN, P. (2014). A review of luteinising hormone and human chorionic gonadotropin when used in assisted reproductive technology. Reproductive Biology and Endocrinology, 12(1), 95. doi:10.1186/1477-7827-12-95
dc.relationFAHIMINIYA, S., LABAS, V., ROCHE, S., DACHEUX, J.-L., GÉRARD, N. (2011). Proteomic analysis of mare follicular fluid during late follicle development. Proteome Science, 9(1), 54. doi:10.1186/1477-5956-9-54
dc.relationGARY, NIE., DANIEL C. SHARP., GILLIAN, ROBINSON., BRIAN D. CLEAVER., MICHAEL B. PORTER. (2007). Chapter 8 clinical aspects of seasonality in mares, 2da edición. pag 68-71
dc.relationGIGLI, I, RUSSO, A., AGÜERO, A. (2006). Consideraciones sobre la dinámica ovárica en equino, bovino y camélidos sudamericanos. InVet, 8(1), 183-204. Recuperado en 11 de diciembre de 2018, de http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1668 34982006000100018&lng=es&tlng=es.
dc.relationGINTHER, DO. (2012). The end of the tour de force of the corpus luteum in mares. Theriogenology, 77 (6), 1042-1049. doi: 10.1016 / j.theriogenology.2011.10.026
dc.relationGINTHER, O. J., BEG, M. A., GASTAL, E. L., GASTAL, M. O., BAERWALD, A. R., PIERSON, R. A. (2005). Systemic concentrations of hormones during the development of follicular waves in mares and women: a comparative study. Reproduction, 130(3), 379–388. doi:10.1530/rep.1.00757
dc.relationGINTHER, O. J., GASTAL, E. L., GASTAL, M. O., BEG, M. A. (2004). Critical Role of Insulin-Like Growth Factor System in Follicle Selection and Dominance in Mares1. Biology of Reproduction, 70(5), 1374–1379. doi:10.1095/biolreprod.103.026195
dc.relationGONÇALVES, P. B., FERREIRA, R., GASPERIN, B., OLIVEIRA, J. F. (2012). Role of angiotensin in ovarian follicular development and ovulation in mammals: a review of recent advances. REPRODUCTION, 143(1), 11–20. doi:10.1530/rep-11-0192
dc.relationMCDONNELL, SM. (2000). Reproductive behavior of stallions and mares: comparison of free-running and domestic in-hand breeding. Animal Reproduction Science, 60-61, 211-219. doi: 10.1016 / s0378-4320 (00) 00136-6
dc.relationMONTESINOS, HERRERO, P. (2012). Sistema Renina Angiotensina Aldosterona Durante el Ciclo Estral en la Yegua Pura Raza Española: Interrelaciones Con Otras Hormonas y Con el Estado Hidroelectrolìtico, (Tesis Doctoral), Universidad Cardenal Herrera CEU, Valencia, España.
dc.relationMOREL, DAVIES M. C. G. (2003). Equine reproductive physiology, breeding and stud management. 2nd ed. New York USA, Institute of Rural Studies University of Wales, Aberystwyth UK, Wallingford, UK: CABI Publishing, Available at: Web site: www.cabi-publishing.org
dc.relationMÜLLER, K., ELLENBERGER, C., & SCHOON, H.-A. (2009). Histomorphological and immunohistochemical study of angiogenesis and angiogenic factors in the ovary of the mare. Research in Veterinary Science, 87(3), 421–431. doi:10.1016/j.rvsc.2009.04.011
dc.relationNAMBO, Y., NAGAOKA, K., TANAKA, Y., NAGAMINE, N., SHINBO, H., NAGATA, S. TAYA, K. (2002). Mechanisms responsible for increase in circulating inhibin levels at the time of ovulation in mares. Theriogenology, 57(6), 1707–1717. doi:10.1016/s0093-691x(02)00683-0
dc.relationPÉREZ, MONTENEGRO, J.(2015), Evaluación de la capacidad de maduración de oocitos obtenidos en diferentes etapas del desarrollo folicular por medio de aspiración folicular en yeguas, Universidad Nacional de Colombia Facultad de Medicina Veterinaria y de Zootecnia Departamento de Salud Animal,( Tesis de investigación presentado como requisito parcial para optar al título de: Magister en Salud Animal) Bogotá, Colombia.
dc.relationPINEDA, GUZMÁN, M. (2013). Determinación de la tasa de preñez en yeguas según el tiempo de duración del primer estro postparto (celo de potro), en el último día de monta o servicio, en la aldea el Aguacate, Chiquimulilla, Santa Rosa. (Título Médico Veterinario). Universidad de San Carlos de Guatemala, Facultad de Medicina Veterinaria y Zootecnia Escuela de “Medicina Veterinaria”. Guatemala.
dc.relationRAMÍREZ, MONTENEGRO, J. (2006). Determinación del Fotoperíodo sobre la actividad ovárica en yeguas durante el año en diferentes haras, en los departamentos de Guatemala, Sacatepequez y Escuintla. (Tesis grado para conferir título de Médico Veterinario), Universidad de San Carlos de Guatemala facultad de Medicina Veterinaria y Zootecnia Escuela de Medicina Veterinaria, Guatemala.
dc.relationRELAVE, F., LEFEBVRE, R. C., BEAUDOIN, S., PRICE, C. (2007). Accuracy of a rapid enzyme-linked immunosorbent assay to measure progesterone in mares. The Canadian veterinary journal = La revue veterinaire canadienne, 48(8), 823-6.
dc.relationSALAZAR-ORTIZ, J., MONGET, P., GUILLAUME, D. (2014). The influence of nutrition on the insulin-like growth factor system and the concentrations of growth hormone, glucose, insulin, gonadotropins and progesterone in ovarian follicular fluid and plasma from adult female horses (Equus caballus). Reproductive Biology and Endocrinology, 12(1), 72. doi:10.1186/1477-7827- 12-72
dc.relationSIROIS, J., DORÉ, M. (1997). The Late Induction of Prostaglandin G/H Synthase-2 in Equine Preovulatory Follicles Supports Its Role as a Determinant of the Ovulatory Process1. Endocrinology, 138(10), 4427–4434. doi:10.1210/endo.138.10.5462
dc.relationWANG, X., ZOU, P., HE, Y., MENG, K., QUAN, F., ZHANG, Y. (2018). Effect of luteinizing hormone on goat theca cell apoptosis and steroidogenesis through activation of the PI3K/AKT pathway. Animal Reproduction Science, 190, 108–118. doi:10.1016/j.anireprosci.2018.01.014
dc.relationYOSHIMURA, Y. (1997). The Ovarian Renin–Angiotensin System in Reproductive Physiology. Frontiers in Neuroendocrinology, 18(3), 247–291. doi:10.1006/frne.1997.0152
dc.relationYOUNGQUIST, R., THREFALL, W. (2007). Current therapy in large animal theriogenology. 2nd ed. St. Louis (Missouri): Saunders-Elsevier, capitol 18,P 144-152
dc.relationWANG, X., ZOU, P., HE, Y., MENG, K., QUAN, F., ZHANG, Y. (2018). Effect of luteinizing hormone on goat theca cell apoptosis and steroidogenesis through activation of the PI3K/AKT pathway. Animal Reproduction Science, 190, 108–118. doi:10.1016/j.anireprosci.2018.01.014
dc.relationWATSON, E. D., BAE, S.-E., THOMASSEN, R., THOMSON, S. R. M., WOAD, K., ARMSTRONG, D. G. (2004). Insulin-like growth factors-I and -II and insulin-like growth factor-binding protein-2 in dominant equine follicles during spring transition and the ovulatory season. Reproduction, 128(3), 321– 329. doi:10.1530/rep.1.00100
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rightsDerechos Reservados - Universidad de Ciencias Aplicadas y Ambientales
dc.titleFactores reproductivos y metabólicos que intervienen en el proceso de la ovulación de la yegua
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución