dc.contributor | Pérez Pérez, León Darío, dir. | |
dc.contributor | Universidad de Ciencias Aplicadas y Ambientales, UDCA | |
dc.creator | Rodríguez Molina, Yeimy Johana | |
dc.date.accessioned | 2016-09-09T15:52:40Z | |
dc.date.available | 2016-09-09T15:52:40Z | |
dc.date.created | 2016-09-09T15:52:40Z | |
dc.date.issued | 2016 | |
dc.identifier | https://repository.udca.edu.co/handle/11158/565 | |
dc.description.abstract | En el presente trabajo se estudió la síntesis de copolímeros en bloque anfifílicos basados en acrilato de colesterilo, acrilato de butilo y polietilenglicol mediante la técnica ARGET-ATRP, la polimerización fue confirmada empleando FT-IR, RMN1H, GPC y DSC. Adicionalmente, se estableció el efecto de la estructura de los copolímeros en el autoensamblaje en medio acuoso para la formación de micelas y sus propiedades coloidales mediante análisis de DLS, TEM y potencial Z. Finalmente, se estudió la capacidad de las micelas poliméricas bioconjugadas con colesterol, para encapsular y liberar anfotericina B (anfB) empleando espectroscopia UV/VIS.
De acuerdo a los resultados obtenidos, propiedades como el diámetro hidrodinámico y morfología de las micelas no se ven afectados por la composición de los copolímeros. Así mismo, al estudiar la encapsulación y liberación de anfB, se encontró que estas propiedades dependen en gran medida del carácter hidrofóbico del copolímero. Alcanzando mayor encapsulación del fármaco a medida que aumenta el contenido de colesterol, mientras que en los estudios de liberación se evidencio que a menor contenido de colesterol la liberación del fármaco es mayor. | |
dc.language | spa | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Química | |
dc.relation | Adams, M., & Kwon, G. S. (2004). Spectroscopic investigation of the aggregation
state of amphotericin B during loading, freeze-drying, and reconstitution of
polymeric micelles. Journal of Pharmacy and Pharmaceutical Sciences, 7(4),
1–6 | |
dc.relation | Adams, M. L., & Kwon, G. S. (2003). Relative aggregation state and hemolytic
activity of amphotericin B encapsulated by poly(ethylene oxide)-block-poly(Nhexyl-L-aspartamide)-acyl conjugate micelles: Effects of acyl chain length.
Journal of Controlled Release, 87(1-3), 23–32. | |
dc.relation | Alex, R., & Bodmeier, R. (1990). Encapsulation of water-soluble drugs by a modified
solvent evaporation method. I. Effect of process and formulation variables on
drug entrapment. Journal of Microencapsulation, 7(3), 347–55. | |
dc.relation | Avella, E. (2006). Espectroscopia IR. In Análisis Orgánico (pp. 2–4). Universidad
Nacional de Colombia. | |
dc.relation | Baginski, M. (2002). Comparative molecular dynamics simulations of amphotericin
B–cholesterol/ergosterol membrane channels. Biochimica et Biophysica Acta
(BBA) - Biomembranes, 1567, 63–78. | |
dc.relation | Barwicz, J., Christian, S., & Gruda, I. (1992). Effects of the aggregation state of
amphotericin B on its toxicity to mice. Antimicrobial Agents and Chemotherapy,
36(10), 2310–2315. | |
dc.relation | carrillo, N. A., Yáñez, D., Aguirre, P., Amar, Y., Vidal, S., & Egaña, R. (2013).
Encapsulación de Biomoléculas Usando Polímeros Naturales : “ Un Nuevo
Enfoque en la Entrega de Fármacos en Medicina .” Avances En Ciencias
Veterinarias, 28(2), 31–40. | |
dc.relation | Choi, S. W., & Kim, J. H. (2007). Design of surface-modified poly(d,l-lactide-coglycolide) nanoparticles for targeted drug delivery to bone. Journal of Controlled
Release, 122(1), 24–30. | |
dc.relation | Cleary, J. D., & Wasan, K. M. (2011). Amphotericin B : A New Look at Cellular
Binding, 30–36. | |
dc.relation | Colombani, O., Ruppel, M., Schubert, F., Zettl, H., Pergushov, D. V., & M??ller, A.
H. E. (2007). Synthesis of poly(n-butyl acrylate)-block-poly(acrylic acid) diblock
copolymers by ATRP and their micellization in water. Macromolecules, 40(12),
4338–4350. | |
dc.relation | Davis, K. a, & Matyjaszewski, K. (2000). Atom Transfer Radical Polymerization of
tert -Butyl Acrylate and Preparation of Block Copolymers, 4039–4047. | |
dc.relation | Diaz, I. L., Parra, C., Linarez, M., & Perez, L. D. (2015). Design of Micelle
Nanocontainers Based on PDMAEMA-b-PCL-b-PDMAEMA Triblock
Copolymers for the Encapsulation of Amphotericin B. AAPS PharmSciTech,
16(5), 1069–1078. | |
dc.relation | Diaz, I. L., & Perez, L. D. (2015). Synthesis and micellization properties of triblock
copolymers PDMAEMA-b-PCL-b-PDMAEMA and their applications in the
fabrication of amphotericin B-loaded nanocontainers. Colloid and Polymer
Science, 293(3), 913–923. | |
dc.relation | Diezi, T. A., & Kwon, G. (2012). Amphotericin B/sterol co-loaded PEG-phospholipid
micelles: effects of sterols on aggregation state and hemolytic activity of
amphotericin B. Pharmaceutical Research, 29(7), 1737–1744. | |
dc.relation | Dong, H., & Matyjaszewski, K. (2008). ARGET ATRP of 2-(Dimethylamino)ethyl
methacrylate as an intrinsic reducing agent. Macromolecules, 41(19), 6868–
6870. | |
dc.relation | Faucher, S., Okrutny, P., & Zhu, S. (2006). Facile and effective purification of
polymers produced by atom transfer radical polymerization via simple catalyst
precipitation and microfiltration. Macromolecules, 39(1), 3–5. | |
dc.relation | Filippin, F. B., & Souza, L. C. (2006). Eficiência terapêutica das formulações lipídicas
de anfotericina B. Revista Brasileira de Ciências Farmacêuticas, 42(2), 167–
194. | |
dc.relation | Gaitzsch, J., Appelhans, D., Gräfe, D., Schwille, P., & Voit, B. (2011). Photocrosslinked and pH sensitive polymersomes for triggering the loading and
release of cargo. Chemical Communications (Cambridge, England), 47(12),
3466–8. | |
dc.relation | Gaucher, G., Dufresne, M.-H., Sant, V. P., Kang, N., Maysinger, D., & Leroux, J.-C.
(2005). Block copolymer micelles: preparation, characterization and application
in drug delivery. Journal of Controlled Release, 109(1-3), 169–188. | |
dc.relation | Gómez, C. (2014). NANOPARTÍCULAS POLIMÉRICAS : TECNOLOGÍA Y
APLICACIONES FARMACÉUTICAS ( Polymeric nanoparticles : technologie
and pharmaceutical applications ). Revista Farmacologica de Chile, 7(2), 7–16. | |
dc.relation | Gregorí Valdés, B. S. (2005). Estructura y actividad de los antifúngicos. Revista
Cubana de Farmacia, 39(2). | |
dc.relation | Hamill, R. J. (2013). Amphotericin B formulations: A comparative review of efficacy
and toxicity. Drugs, 73(9), 919–934. | |
dc.relation | Horne, D. S. (1995). Steric stabilization and casein micelle stability. Journal of
Colloid And Interface Science, 111(1), 250–260. | |
dc.relation | Jakubowski, W., Min, K., & Matyjaszewski, K. (2006). Activators regenerated by electron transfer for atom transfer radical polymerization of styrene.
Macromolecules, 39(1), 39–45. | |
dc.relation | Jáuregui-haza, R. O. U. J. (2012). Las nanopartículas como portadores de
fármacos : características y perspectivas Nanoparticles as drug carriers :
characteristics and perspectives, 43(3). | |
dc.relation | Jeong, B., Han Bae, Y., & Wan Kim, S. (1999). Biodegradable thermosensitive
micelles of PEG-PLGA-PEG triblock copolymers. Colloids and Surfaces B:
Biointerfaces, 16(1-4), 185–193. | |
dc.relation | Jia, L., Albouy, P. A., Di Cicco, A., Cao, A., & Li, M. H. (2011). Self-assembly of
amphiphilic liquid crystal block copolymers containing a cholesteryl mesogen:
Effects of block ratio and solvent. Polymer, 52(12), 2565–2575. | |
dc.relation | Katime, I., Quintana, J., & Villacampa, M. (2003). Micelas. Revista Iberoamericana,
4(2), 123–151. | |
dc.relation | Konak, C., Ganchev, B., Teodorescu, M., Matyjaszewski, K., Kopeckova, P., &
Kopecek, J. (2002). Poly[N-(2-hydroxypropyl)methacrylamide-block-n-butyl
acrylate] micelles in water/DMF mixed solvents. Polymer, 43(13), 3735–3741. | |
dc.relation | Kwak, Y., & Matyjaszewski, K. (2009). ARGET ATRP of methyl methacrylate in the
presence of nitrogen-based ligands as reducing agents. Polymer International,
58(3), 242–247 | |
dc.relation | Laniado, R., & Cabrales, M. N. (2009). Amphotericin B: side effects and toxicity.
Revista Iberoamericana de Micologia, 26(4), 223–227. | |
dc.relation | Laskar, P., Saha, B., Ghosh, S., & Dey, J. (2015). PEG based random copolymer
micelles as drug carriers: Effect of hydrophobe content on drug solubilization
and cytotoxicity. RSC Adv., 5 | |
dc.relation | Laskar, P., Samanta, S., Ghosh, S. K., & Dey, J. (2014). In vitro evaluation of pHsensitive cholesterol-containing stable polymeric micelles for delivery of
camptothecin. Journal of Colloid and Interface Science, 430, 305–314. | |
dc.relation | Lavasanifar, A., Samuel, J., & Kwon, G. S. (2002). The effect of fatty acid substitution
on the in vitro release of amphotericin B from micelles composed of
poly(ethylene oxide)-block-poly(N-hexyl stearate-L-aspartamide). Journal of
Controlled Release, 79(1-3), 165–172. | |
dc.relation | Lavasanifar, A., Samuel, J., Sattari, S., & Kwon, G. S. (2002). Block Copolymer
Micelles for the Amphotericin B. Pharmaceutical Research, 19(4), 418–422. | |
dc.relation | Lee, A. L. Z., Venkataraman, S., Sirat, S. B. M., Gao, S., Hedrick, J. L., & Yang, Y.
Y. (2012). The use of cholesterol-containing biodegradable block copolymers to
exploit hydrophobic interactions for the delivery of anticancer drugs.
Biomaterials, 33(6), 1921–1928. | |
dc.relation | Leibler, L., Orland, H., & Wheeler, J. C. (2003). Theory of critical micelle
concentration for solutions of block copolymers. Journal of Chemical Physics,
79(7), 3550–3557. | |
dc.relation | Luengo-Alonso, C., Torrado, J. J., Ballesteros, M. P., Malfanti, A., Bersani, S.,
Salmaso, S., & Caliceti, P. (2015). A novel performing PEG-cholane
nanoformulation for Amphotericin B delivery. International Journal of
Pharmaceutics, 495(1), 41–51. | |
dc.relation | Luisi, P. L. (2001). Are micelles and vesicles chemical equilibrium systems? Journal
of Chemical Education, 78(3), 380–384. | |
dc.relation | Ma, Q., & Wooley, K. L. (2000). The preparation oft-butyl acrylate, methyl acrylate,
and styrene block copolymers by atom transfer radical polymerization:
Precursors to amphiphilic and hydrophilic block copolymers and conversion to
complex nanostructured materials. Journal of Polymer Science Part A: Polymer
Chemistry, 38(S1), 4805–4820. | |
dc.relation | Matyjaszewski, K. (1994). No Title. Retrieved from | |
dc.relation | Matyjaszewski, K. (2012). Atom Transfer Radical Polymerization (ATRP): Current
Status and Future Perspectives. Macromolecules, 45(10), 4015–4039 | |
dc.relation | Matyjaszewski, K., & Xia, J. (2001). Atom transfer radical polymerization. Chemical
Reviews, 101(9), 2921–2990. | |
dc.relation | Myles, D. G., Biol, D., Jaffe, L. A., Brawley, S. H., Bernard, U. C., The, F., … Langerll,
R. (1994). Biodegradable Long-Circulating Polymeric Nanospheres ILlauana
Upon solvent evaporation , the. Science, 263(January), 1600–1603 | |
dc.relation | Osouli, K. (2013). No Title. Retrieved from
https://www.researchgate.net/post/How_do_I_synthesize_acryloyl_chloride | |
dc.relation | Pasquali, R. C., Chiappetta, D. A., & Bregni, C. (2005a). Los Copol í meros en
Bloques Anfif í licos y sus Aplicaciones Farmac é uticas, 24(4). | |
dc.relation | Pasquali, R. C., Chiappetta, D. A., & Bregni, C. (2005b). No Title. Retrieved from | |
dc.relation | Picos, D., Gómez, M., Fernández, D., & Núñez, L. (2000). Microesferas
biodegradables de liberación controlada para administración parenteral.
Control, 34(1), 70–77. | |
dc.relation | Pinto Reis, C., Neufeld, R. J., Ribeiro, A. J., & Veiga, F. (2006). Nanoencapsulation
I. Methods for preparation of drug-loaded polymeric nanoparticles.
Nanomedicine: Nanotechnology, Biology, and Medicine, 2(1), 8–21. | |
dc.relation | Pittella, F., Cabral, H., Maeda, Y., Mi, P., Watanabe, S., Takemoto, H., … Kataoka,
K. (2014). Systemic siRNA delivery to a spontaneous pancreatic tumor model
in transgenic mice by PEGylated calcium phosphate hybrid micelles. Journal of Controlled Release, 178(1), 18–24. | |
dc.relation | Rodríguez-Hernandez, J., Chécot, F., Gnanou, Y., & Lecommandoux, S. (2005).
Toward “smart” nano-objects by self-assembly of block copolymers in solution.
Progress in Polymer Science (Oxford), 30(7), 691–724. | |
dc.relation | Rösler, A., Vandermeulen, G. W. M., & Klok, H. A. (2012). Advanced drug delivery
devices via self-assembly of amphiphilic block copolymers. Advanced Drug
Delivery Reviews, 64(SUPPL.), 270–279. | |
dc.relation | Saenz, Hernaez, Sanz, K. (2004). Liberación Controlada De Fármacos.
Micropartículas. Revista Iberoamericana de Polimeros, 5(2)(2), 15. | |
dc.relation | Saha, S., Copic, D., Bhaskar, S., Clay, N., Donini, A., Hart, A. J., & Lahann, J. (2012).
Chemically controlled bending of compositionally anisotropic microcylinders.
Angewandte Chemie - International Edition, 51(3), 660–665. | |
dc.relation | Sánchez-Brunete, J. A., Dea, M. A., Rama, S., Bolás, F., Alunda, J. M., TorradoSantiago, S., & Torrado, J. J. (2004). Amphotericin B molecular organization as
an essential factor to improve activity/toxicity ratio in the treatment of visceral
leishmaniasis. Journal of Drug Targeting, 12(7), 453–60. | |
dc.relation | Serrano, E., Zubeldia, A., Eceiza, A., Remiro, P., & Mondragon, I. (2002). Análisis
Microscópico Y Físico-Químico Del Auto-, (Kraton 4274), 777–782. | |
dc.relation | Sevimli, S., Sagnella, S., Kavallaris, M., Bulmus, V., & Davis, T. P. (2012). Synthesis,
self-assembly and stimuli responsive properties of cholesterol conjugated
polymers. Polymer Chemistry, 3(8), 2057. | |
dc.relation | Shameli, K., Ahmad, M. Bin, Jazayeri, S. D., Sedaghat, S., Shabanzadeh, P.,
Jahangirian, H., … Abdollahi, Y. (2012). Synthesis and characterization of
polyethylene glycol mediated silver nanoparticles by the green method.
International Journal of Molecular Sciences, 13(6), 6639–6650. | |
dc.relation | Shen, H., Hong, S., Prud’Homme, R. K., & Liu, Y. (2011). Self-assembling process
of flash nanoprecipitation in a multi-inlet vortex mixer to produce drug-loaded
polymeric nanoparticles. Journal of Nanoparticle Research, 13(9), 4109–4120. | |
dc.relation | Siegwart, D. J., Oh, J. K., & Matyjaszewski, K. (2012). ATRP in the design of
functional materials for biomedical applications. Progress in Polymer Science
(Oxford), 37(1), 18–37. | |
dc.relation | Soppimath, K. S., Aminabhavi, T. M., & Kulkarni, A. R. (2001). Biodegradable
polymeric nanoparticles as drug delivery devices. Controlled Release, 70, 1–
20. | |
dc.relation | Spink, C. H. (2008). Differential Scanning Calorimetry. Methods in Cell Biology,
84(07), 115–141 | |
dc.relation | Suriñach Cornet Santiago Bordas Alsina, N. Clavaguera, M. T. Clavaguera-Mora,
M. D. B. (2002). La calorimetría diferencial de barrido y su aplicación a la
Ciencia de Materiales. Boletín de La Sociedad Española de Cerámica Y Vidrio,
31, 11–17. | |
dc.relation | Torchilin, V. P. (2005). Block copolymer micelles as a solution for drug delivery
problems. Expert Opinion on Therapeutic Patents, 15, 63–75. | |
dc.relation | Torrado, J. J., Espada, R., Ballesteros, M. P., & Torrado-Santiago, S. (2010). In vivo
study of a polymeric glucose-sensitive insulin delivery system using a rat model.
Journal of Pharmaceutical Sciences, 99(10), 4215–4227. | |
dc.relation | Vakil, R., & Kwon, G. S. (2008). Effect of cholesterol on the release of amphotericin
B from PEG-phospholipid micelles. Molecular Pharmaceutics, 5(1), 98–104. | |
dc.relation | Vîjan, L. E. (2015). Comparative study of the interactions of amphotericin B with
cholesteryl / stigmasteryl comparative study of the interactions of amphotericin
b with, (November). | |
dc.relation | Vijan, L. E., & Topala, C. (2009). The characterizing of the interaction of amphotericin
B with cholesteryl esters. Journal of Molecular Liquids, 147(1-2), 135–138. | |
dc.relation | Wang, J.-S., & Matyjaszewski, K. (1995). Controlled/“Living” Radical Polymerization.
Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II)
Redox Process. Macromolecules, 28(23), 7901–7910. | |
dc.relation | Wasan, E. K., Bartlett, K., Gershkovich, P., Sivak, O., Banno, B., Wong, Z., …
Wasan, K. M. (2009). Development and characterization of oral lipid-based
Amphotericin B formulations with enhanced drug solubility, stability and
antifungal activity in rats infected with Aspergillus fumigatus or Candida
albicans. International Journal of Pharmaceutics, 372(1-2), 76–84. | |
dc.relation | Xing, L., & Mattice, W. L. (1997). Strong solubilization of small molecules by triblockcopolymer micelles in selective solvents. Macromolecules, 30(6), 1711–1717. | |
dc.relation | Yan, Q., Yuan, J., Zhang, F., Sui, X., Xie, X., Yin, Y., … Wei, Y. (2009). Cellulosebased dual graft molecular brushes as potential drug nanocarriers: Stimulusresponsive micelles, self-assembled phase transition behavior, and tunable
crystalline morphologies. Biomacromolecules, 10(8), 2033–2042. | |
dc.relation | Zhang, X., Zhu, X., Ke, F., Ye, L., Chen, E. qiang, Zhang, A. ying, & Feng, Z. guo.
(2009). Preparation and self-assembly of amphiphilic triblock copolymers with
polyrotaxane as a middle block and their application as carrier for the controlled
release of Amphotericin B. Polymer, 50(18), 4343–4351. | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | |
dc.rights | Derechos Reservados - Universidad de Ciencias Aplicadas y Ambientales | |
dc.subject | Copolímeros Anfífilicos | |
dc.subject | Colesterol | |
dc.subject | Anfotericina B | |
dc.title | Síntesis de copolímeros anfifílicos bioconjugados con colesterol y su aplicación en la encapsulación y liberación de anfotericina B | |
dc.type | Trabajo de grado - Pregrado | |