dc.contributorJiménez Cruz, Ronald Andrés, dir.
dc.creatorJaimes Vega, Nathalia Andrea
dc.creatorJiménez Cruz, Ronald Andrés
dc.date.accessioned2020-02-11T16:27:24Z
dc.date.available2020-02-11T16:27:24Z
dc.date.created2020-02-11T16:27:24Z
dc.date.issued2019
dc.identifierhttps://repository.udca.edu.co/handle/11158/2748
dc.identifierQF031 J13a 2019 (205833)
dc.description.abstractEsta investigación busca analizar el aporte del Químico Farmacéutico en el desarrollo de productos de terapias avanzadas en Colombia, identificar los principales desafíos a nivel regulatorio para la implementación de productos de terapias
dc.languagespa
dc.publisherBogotá : Universidad de Ciencias Aplicadas y Ambientales, 2019
dc.publisherFacultad de Ciencias
dc.publisherQuímica Farmacéutica
dc.relationAbbasalizadeh, S., & Baharvand, H. (2013). Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnology Advances, 31(8), 1600-1623. https://doi.org/10.1016/j.biotechadv.2013.08.009
dc.relationAnatol, R., Arcidiacono, J., Bailey, A. M., Durfor, C. N., Fink, D. W., Holobaugh, P., … Witten, C. (2014). The Regulatory Process from Concept to Market. Principles of Tissue Engineering (Fourth Edition). Elsevier. https://doi.org/10.1016/B978-0-12-398358-9.00086-0
dc.relationAtala, A. (2019). Principles of Tissue Engineering. Campbell-Walsh Urology (Eleventh E). Elsevier Inc. https://doi.org/10.1016/B978-1-4557-7567-5.00020-0
dc.relationAusubel, Lara J. Lopez, P. M., & Couture, L. A. (2011). GMP Scale-Up and Banking of Pluripotent Stem Cells for Cellular Therapy Applications. Human Pluripotent Stem Cells, 767, 147-159
dc.relationAyala, L. A. (2007). Medicina regenerativa y enfermedades cardiovasculares: Terapia con células madre, 5(2), 38-41.
dc.relationBaghbaderani, B. A., Tian, X., Neo, B. H., Burkall, A., Dimezzo, T., Sierra, G., … Rao, M. S. (2015). Stem Cell Reports. Stem Cell Reports, 5(4), 647-659. https://doi.org/10.1016/j.stemcr.2015.08.015
dc.relationBall, O., Robinson, S., Bure, K. I. M., Brindley, D. A., & Mccall, D. (2018). Bioprocessing automation in cell therapy manufacturing : Outcomes of special interest group automation workshop. Cytotherapy, 20(4), 592-599. https://doi.org/10.1016/j.jcyt.2018.01.005
dc.relationBravery, C. A., Carmen, J., Fong, T., Oprea, W., Hoogendoorn, K. H., Woda, J., … Hof, W. V. A. N. T. (2013). Potency assay development for cellular therapy products : an ISCT * review of the requirements and experiences in the industry. Journal of Cytotherapy, 15(1), 9-19.e9. https://doi.org/10.1016/j.jcyt.2012.10.008
dc.relationBrien, F. J. O. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88-95. https://doi.org/10.1016/S1369-7021(11)70058-X
dc.relationBuckler, R. L. E. E., Kunkel, E. J., Thompson, M. L., & Ehrhardt, R. O. (2016). Technological developments for small-scale downstream processing of cell therapies. Cytotherapy, 18(3), 301-306. https://doi.org/10.1016/j.jcyt.2015.12.003
dc.relationCalmels, B., Mfarrej, B., & Chabannon, C. (2018). From clinical proof-of-concept to commercialization of CAR T cells. Drug Discovery Today, 23(4), 758-762. https://doi.org/10.1016/j.drudis.2018.01.024
dc.relationCarreras, E. (2016). Guía del Trasplante de Médula Ósea
dc.relationChaparro, O., Ph, D., Beltrán, O., & Sc, M. (2009). REPROGRAMACIÓN NUCLEAR Y CÉLULAS Introducción. Med, 17(2), 252-263.
dc.relationCorbett, M. S., Webster, A., Hawkins, R., & Woolacott, N. (2017). Innovative regenerative medicines in the EU : a better future in evidence ?, 1-8. https://doi.org/10.1186/s12916-017-0818-4
dc.relationCuende, N., Rasko, J. E. J., & Koh, M. B. C. (2018). Cell , tissue and gene products with marketing authorization in 2018 worldwide. Cytotherapy, 20(11), 1401- 1413. https://doi.org/10.1016/j.jcyt.2018.09.010
dc.relationDetela, G., & Lodge, A. (2016). Manufacturing process development of ATMPs within a regulatory framework for EU clinical trial & marketing authorisation applications. Cell and gene therapy insights, 425-452. https://doi.org/10.18609/cgti.2016.056
dc.relationDeusen, A. L. Van. (2016). 6 - Compatibility of GxP with Existing Cell Therapy Quality Standards. Guide to Cell Therapy GxP. Elsevier Inc. https://doi.org/10.1016/B978-0-12-803115-5.00006-1
dc.relationDotti, G., & Brenner, M. K. (2019). Chapter 100 - T-Cell Therapy of Hematologic Diseases. En Hematology (Seventh Ed, pp. 1568-1574). Elsevier Inc. https://doi.org/10.1016/B978-0-323-35762-3.00100-1
dc.relationDuvall, C. L., Gersbach, C. A., & Davidson, J. M. (2014). Gene Delivery into Cells and Tissues. https://doi.org/10.1016/B978-0-12-398358-9.00035-5
dc.relationEaker, S., Abraham, E., Allickson, J., Brieva, T. A., Baksh, D., Heathman, T. R. J., … Zhang, N. A. N. (2017). Bioreactors for cell therapies : Current status and future advances. Cytotherapy, 19(1), 9-18. https://doi.org/10.1016/j.jcyt.2016.09.011
dc.relationFernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la Investigación. (McGrawHill, Ed.) (6a ed.). México, D.F.
dc.relationFoss, D. V, Hochstrasser, M. L., & Wilson, R. C. (2018). Clinical applications of CRISPR-based genome editing and diagnostics. Transfusion, 0, 1-11. https://doi.org/10.1111/trf.15126
dc.relationFreimark, D., Pino-Grace, P.-, Pohl, S., Weber, C., Wallrapp, C., & Geigle, P. (2010). Use of encapsulated stem cells to overcome the bottleneck of cell availability for cell therapy approaches. Transfusion Medicine Hemotherapy, 37, 66-73.
dc.relationFundación Mencía. (2017). Fundación Mencía. Recuperado a partir de http://www.fundacionmencia.org/es/enfermedades-geneticas/terapia-genica/
dc.relationFurth, M. E., Atala, A., Innovations, W. F., & Carolina, N. (2014). Tissue Engineering : Future Perspectives. Principles of Tissue Engineering (Fourth Edition). Elsevier. https://doi.org/10.1016/B978-0-12-398358-9.00006-9
dc.relationGarcía, S. C. (2012). Gen ajeno o exógeno : transgén, 4, 187-199.
dc.relationGavin, D. K., & Ph, D. (s. f.). Advanced Topics : Successful Development of Quality Cell and Gene Therapy Products Division of Cellular and Gene Therapies.
dc.relationGee, A. P. (2009). Cell therapy: cGMP Facilities and Manufacturing. (A. P. Gee, Ed.) (1.a ed.). Houston, TX: Springer US. https://doi.org/10.1007/b102110
dc.relationGee, A. P. (2019). Chapter 97 - Graft Engineering and Cell Processing. Hematology (Seventh Ed). Elsevier Inc. https://doi.org/10.1016/B978-0-323-35762-3.00097- 4
dc.relationGilbert, T. W., Sellaro, T. L., & Badylak, S. F. (2006). Decellularization of tissues and organs. Biomaterials, 27, 3675-3683. https://doi.org/10.1016/j.biomaterials.2006.02.014
dc.relationGuzmán Cruz, J. H., & Otálvaro Cifuentes, E. H. (2016). PERSPECTIVA DE TERAPIAS AVANZADAS EN EL MARCO NORMATIVO. Cartagena: INVIMA.
dc.relationHernández Ramírez, P. (2006). Medicina regenerativa II. Aplicaciones, realidad y perspectivas de la terapia celular. Revista Cubana de Hematología, Inmunología y Hemoterapia, 22(1). Recuperado a partir de http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864- 02892006000100002
dc.relationHildebrand, M., & Hochschule, M. (2011). Manufacture of advanced therapies : Academia meets industry, 8(7), 9-10
dc.relationHouse of Lords Science and Technology Committee. (2013). Regenerative medicine report. London.
dc.relationHuman, T. H. E., Stem, E., Human, T. H. E., & Germ, E. (1998). THE HUMAN EMBRYONIC STEM CELL AND, 11-22
dc.relationIglesias-lópez, C., Agustí, A., Obach, M., & Vallano, A. (2019). Regulatory Framework for Advanced Therapy Medicinal Products in Europe and United States, 10(August), 1-14. https://doi.org/10.3389/fphar.2019.00921
dc.relationIyer, R. K., Bowles, P. A., Kim, H., & Dulgar-tulloch, A. (2018). Industrializing Autologous Adoptive Immunotherapies : Manufacturing Advances and Challenges, 5(May), 1-9. https://doi.org/10.3389/fmed.2018.00150
dc.relationJones, J. (2005). Scaffolds for tissue engineering. En Biomaterials, artificial organs and tissue engineering (pp. 201-214). https://doi.org/10.1533/9781845690861.4.201
dc.relationKalra, K., & Tomar, P. C. (s. f.). Stem Cell : Basics , Classification and Applications
dc.relationKarginov, F., & Hannon, G. (2010). The CRISPR System: Small RNA-Guided Defense in Bacteria and Archaea Molecular Cell. Molecular Cell, 37(1), 7-19. https://doi.org/10.1016/j.molcel.2009.12.033
dc.relationKhademhosseini, A., Karp, J. M., Gerecht-nir, S., Ferreira, L., Annabi, N., Sirabella, D., & Vunjak-novakovic, G. (2014). Embryonic Stem Cells as a Cell Source for Tissue Engineering. Principles of Tissue Engineering (Fourth Edition). Elsevier. https://doi.org/10.1016/B978-0-12-398358-9.00032-X
dc.relationKulinets, I. (2015). Biomaterials and their applications in medicine. En Regulatory Affairs for Biomaterials and Medical Devices (pp. 1-10). Woodhead Publishing Limited. https://doi.org/10.1533/9780857099204.1
dc.relationLindblad, R., Mondoro, T. H., & Wood, D. (2019). INVESTIGATIONAL NEW DRUG – ENABLING PROCESSES FOR CELL-BASED THERAPIES. Hematology (Seventh Ed). Elsevier Inc. https://doi.org/10.1016/B978-0-323- 35762-3.00096-2
dc.relationLowry, W. E., & Quan, W. L. (2010). Roadblocks en route to the clinical application of induced pluripotent stem cells. Journal of Cell Science, 123, 643-651.
dc.relationMa, R., Schaer, M., Hogan, M., Demange, M., & Rodeo, S. A. (2019). Orthobiologics : Clinical Application of Platelet-Rich Plasma and Stem Cell Therapy. DeLee, Drez, and Miller’s Orthopaedic Sports Medicine (Fourth Edi). Elsevier Inc. https://doi.org/10.1016/B978-1-4557-4376-6.00005-6
dc.relationManuscript, A. (2013). NIH Public Access, 18(3), 217-222. https://doi.org/10.1111/j.1601-0825.2011.01870.x.The
dc.relationMaría, D., & Ibarz, T. (s. f.). Desafíos en la Regulación de Nuevos Productos Biológicos : Terapia Génica , Celular y Tisular Terapia Génica , Celular y Tisular Estrategias terapéuticas innovadoras que ofrecen nuevas oportunidades para algunas enfermedades que carecen de.
dc.relationMarketsandMarkets. (2019). Regenerative Medicine Market by Type. US
dc.relationMartin, G. (1981). Isolation of a pluripoten cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA, 78.
dc.relationMartin, U. (2017). Therapeutic Application of Pluripotent Stem Cells : Challenges and Risks, 4(December). https://doi.org/10.3389/fmed.2017.00229
dc.relationMason, C., & Brindley, D. A. (2011). Cell therapy industry : billion dollar global business with unlimited potential E ditorial. Regenerative Medicine, 6(3), 265- 272
dc.relationMoffat, K. L., Neal, R. A., Freed, L. E., & Guilak, F. (2014). Engineering Functional Tissues : In Vitro Culture Parameters. Principles of Tissue Engineering (Fourth Edition). Elsevier. https://doi.org/10.1016/B978-0-12-398358-9.00013-6
dc.relationMorrow, D., Ussi, A., & Migliaccio, G. (2017). Addressing Pressing Needs in the Development of Advanced therapies, 5(September), 1-6. https://doi.org/10.3389/fbioe.2017.00055
dc.relationMulet, J., & Cance, P. (s. f.). Development of Advanced Therapy Medicinal Products in Europe. BlueReg Pharma Consulting
dc.relationNaldini, L. (2011). Ex vivo gene transfer and correction for cell-based therapies. Nature Publishing Group, 12(5), 301-315. https://doi.org/10.1038/nrg2985
dc.relationNational Institue of Health. (2019). Clinical Trials. Recuperado a partir de https://clinicaltrials.gov/ct2/home
dc.relationNIH. (s. f.). Recuperado a partir de https://www.cancer.gov/publications/dictionaries/cancerterms/def/hematopoietic-stem-cell
dc.relationNIH, N. I. of H. (2015). Stem Cell Basics.
dc.relationOliveira, E. P., Silva-correia, J., & Reis, R. L. (2018). Biomaterials Developments for Brain Tissue Engineering.
dc.relationOsorio-Delgado, M. A., Henao-Tamayo, L. J., Velásquez-Cock, J. A., CañasGutiérrez, A. I., Restrepo-Múnera, L. M., Gañán-Rojo, P. F., … Castro-Herazo, C. I. (2017). Biomedical applications of polymeric biomaterials • Aplicaciones biomédicas de biomateriales poliméricos. DYNA, 84(201), 241-252. https://doi.org/http://dx.doi.org/10.15446/dyna.v84n201.60466
dc.relationPereira, T. D., Moncaubeig, F., & Farid, S. S. (2018). Impact of allogeneic stem cell manufacturing decisions on cost of goods , process robustness and reimbursement. Biochemical Engineering Journal, 137, 132-151. https://doi.org/10.1016/j.bej.2018.04.017
dc.relationPicó, Y., Farré, M., Kantiani, L., & Barceló, D. (2012). Microfluidic Devices: Biosensors. Chemical Analysis of Food: Techniques and Applications, 177-217. https://doi.org/10.1016/B978-0-12-384862-8.00007-8
dc.relationResearch and Markets. (2019). Global Market for Cell Therapy & Tissue Engineering 2019. Recuperado a partir de https://www.researchandmarkets.com/reports/4767224/market-for-cell-therapyand-tissueengineering?utm_source=GN&utm_medium=PressRelease&utm_code=w64bt5 &utm_campaign=1240202+- +Global+Market+for+Cell+Therapy+%26+Tissue+Engineering%2C+2019%3A +The+Arrival+of+Regenerative+Medicine+(RM)+has+been+Propelled+by+Ad vances+Across+the+Cell+Therapy+(CT)+and+Tissue+(TE)+Engineering+Indus tries&utm_exec=joca220prd
dc.relationRoa Ramirez, Derly Alexandra; Quitian Ayala, R. del P. (2016). SITUACIÓN ACTUAL DE LA INGENIERIA DE TEJIDOS Y MEDICINA REGENERATIVA EN COLOMBIA. Universidad de Ciencias Aplicadas y Ambientales (UDCA).
dc.relationRodríguez, E. D. E. D., Peña, A. V., Edreira, A. R., García, B. M., Infiesta, A. M., & Llames, S. G. (2004). ESTADO ACTUAL DE LA INGENIERIA DE TEJIDOS EN UROLOGÍA. REVISIÓN DE LA LITERATURA. Actas Urológicas Españolas, 28(9), 636-645.
dc.relationScienceDirect. (s. f.). Recuperado a partir de https://www.sciencedirect.com/topics/neuroscience/bioreactors
dc.relationSlack, J. M. W. (2014). Molecular Biology of the Cell. Principles of Tissue Engineering (Fourth Edition). Elsevier. https://doi.org/10.1016/B978-0-12- 398358-9.00007-0
dc.relationSolomon, J., Csontos, L., Clarke, D., Bonyhadi, M., Zylberberg, C., Mcniece, I. A. N., … Deans, R. (2016). Current perspectives on the use of ancillary materials for the manufacture of cellular therapies. Cytotherapy, 18(1), 1-12. https://doi.org/10.1016/j.jcyt.2015.09.010
dc.relationSpector, M. (2006). Biomaterials-based tissue engineering and regenerative medicine solutions to musculoskeletal problems. Swiss Med Wkly, 136, 293-302.
dc.relationStockdale, F. E. (2014). Gene Expression , Cell Determination , and Differentiation. Principles of Tissue Engineering (Fourth Edition). Elsevier. https://doi.org/10.1016/B978-0-12-398358-9.00012-4
dc.relationSuárez, J., & Herreros, D. L. (s. f.). Tratamiento Regenerativo en Pacientes con Infarto de Miocardio Anterior Extenso con Infarto de Miocardio Anterior Extenso Tratamiento Regenerativo en Pacientes.
dc.relationTakebe, T., Sekine, K., Kimura, M., Yoshizawa, E., Ayano, S., Koido, M., … Taniguchi, H. (2017). Massive and Reproducible Production of Liver Buds Entirely from Human Pluripotent Stem Cells Report Massive and Reproducible Production of Liver Buds Entirely from Human Pluripotent Stem Cells. CellReports, 21(10), 2661-2670. https://doi.org/10.1016/j.celrep.2017.11.005
dc.relationTakeda, H., Dondzillo, A., Randall, J. A., & Gubbels, S. P. (2019). Challenges in Cell-Based Therapies for the Treatment of Hearing Loss. Trends in Neurosciences, 41(11), 823-837. https://doi.org/10.1016/j.tins.2018.06.008
dc.relationTavira Montalván, C. A., Ortega García, A., Dávila González, I., Estrada Moncada, S., & Meneses Acosta, A. (2009). Alcances y perspectivas del cultivo de células animales en la biotecnología farmacéutica Animal cell culture in pharmaceutical biotechnology : research and perspectives. Revista Mexicana de Ciencias Farmacéuticas, 40(4).
dc.relationU.S Department of Health and Human Services. (2019). National Institutes of Health Recuperado a partir de https://stemcells.nih.gov/info/basics.htm
dc.relationUnited States Adopted Names. (2016). American Medical Association. Recuperado a partir de https://www.ama-assn.org/about/united-states-adopted-names/cellularnoncellular-therapies-naming-scheme
dc.relationWorgall, S., & Crystal, R. G. (2014). Gene Therapy. Principles of Tissue Engineering (Fourth Edition). Elsevier. https://doi.org/10.1016/B978-0-12-398358-9.00034-3
dc.relationYu, J., & Thomson, J. A. (2001). 1. embryonic stem cells, 1-12.
dc.relationZafar, M. S., Ullah, R., Qamar, Z., Fareed, M. A., Amin, F., Khurshid, Z., & Sefat, F. (2019). Properties of dental biomaterials. En F. S. Zohaib Khurshid, Shariq Najeeb, Muhammad Sohail Zafar (Ed.), Advanced Dental Biomaterials (1.a ed., pp. 7-35). Woodhead Publishing Limited. https://doi.org/https://doi.org/10.1016/B978-0-08-102476-8.00002-5
dc.relationZakrzewski, W., Dobrzy, M., Szymonowicz, M., & Rybak, Z. (2019). Stem cells : past , present , and future, 5, 1-22.
dc.relationZhou, W., & Kantardjieff, A. (s. f.). Mammalian Cell Cultures for Biologics Manufacturing.
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rightsDerechos Reservados - Universidad de Ciencias Aplicadas y Ambientales
dc.titleAporte del químico farmacéutico a los desafíos relacionados con el desarrollo de productos de terapias avanzadas en Colombia
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución