dc.contributorFernández Sarmiento, Jaime
dc.contributorReyes Casas, Martha Cecilia
dc.creatorAlcalá Lozano, Silvia Catalina
dc.creatorErazo Vargas, Sofia Camila
dc.creatorGómez Cortes, Laura Bibiana
dc.date.accessioned2019-08-27T12:26:26Z
dc.date.available2019-08-27T12:26:26Z
dc.date.created2019-08-27T12:26:26Z
dc.date.issued2018
dc.identifierhttp://repository.urosario.edu.co/handle/10336/20167
dc.description.abstractObjective. To establish the association between the administration of balanced an unbalanced crystalloid with different results such as acute kidney injury, metabolic acidosis and hyperchloremia, in children with severe sepsis and septic shock hospitalized in the PICU and in the cardiovascular PICU of the Fundación CardioInfantil. Type of study. Retrospective observational cohort. Patients. A cohort of patients from 1 month to 17 years of age, with severe sepsis and septic shock, who are hospitalized in the PICU and in the C-PICU of the Fundación CardioInfantil, from April 1/2018 to April 30/2019, and that received balanced and unbalanced crystalloids for hemodynamic stabilization, was collected. The association between the crystalloid type (balanced and unbalanced) and different outcome (acute kidney injury metabolic acidosis and hyperchloremia) was evaluated. Interventions. None. Results. Of 1074 patients hospitalized in the PICU and the C-PICU in the observation period, were included 103 patients with severe sepsis and septic shock, with an average age of 15 months old and a greater percentage of males. The mean length of stay in the PICU was 7.5 days. The most frequent infections were the respiratory, and secondly, the gastrointestinal ones (54.4% and 24.3%, respectively). It was found that 47.2% of patients who received unbalanced crystalloids developed acute renal injury (p<0.003), and of them, 16.7% required extracorporeal renal support (p<0.002). The mortality to the day 28 was significantly lower (7.6% vs 25.7%; p=0.02 respectively). There were no differences in the development of metabolic acidosis (p=0.84) and hyperchloremia (p=0.12) between the groups. Conclusion. The administration of balanced crystalloids was associated with a lower rate of acute kidney injury in children with severe sepsis and septic shock, and secondly, with a lower need for extracorporeal renal support and mortality rate.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherEspecialización en Cuidado Intensivo Pediátrico
dc.publisherFacultad de medicina
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightsRestringido (Temporalmente bloqueado)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.sourcePrusakowski MK, Chen AP. Pediatric Sepsis. Emerg Med Clin North Am. 2017;35(1):123–38.
dc.sourceKawasaki T. Update on pediatric sepsis: A review. J Intensive Care. 2017;5(47):1–12.
dc.sourceGuillén Cánovas AM, Esquijarosa Roque BM, Bejerano Pérez N, Álvarez Reinoso S, Gonzáles Ungo EL. Proyección hospitalaria a la comunidad: repercusión en la morbilidad y mortalidad por sepsis. Rev Ciencias Médicas Pinar del Río. 2013;17(6):15–25.
dc.sourceEngel C, Brunkhorst FM, Bone H-G, Brunkhorst R, Gerlach H, Grond S, et al. Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med. 2007;33(4):606–18.
dc.sourceWang H, Coates MM, Coggeshall M, Dandona L, Fraser M, Fullman N, et al. Global, regional, national, and selected subnational levels of stillbirths, neonatal, infant, and under-5 mortality, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1725–74.
dc.sourceOrganización Mundial de la Salud. Estadísticas Sanitarias Mundiales 2011 [Internet] . Organización Mundial de la Salud; 2011. Disponible en: http://www.who.int/whosis/whostat/ES_WHS2011_Full.pdf.
dc.sourceOrganización Mundial de la Salud. Mejora de la prevención, el diagnóstico y la atención clínica de la septicemia [Internet]. Organización Mundial de la Salud; 2017. Disponible en: http://apps.who.int/gb/ebwha/pdf_files/EB140/B140_12-sp.pdf
dc.sourceVincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al. Sepsis in European intensive care units: Results of the SOAP study. Crit Care Med. 2006;34(2):344–53.
dc.sourceOrganización Panamericana de la Salud. Informe final sobre los Objetivos de Desarrollo del Milenio relacionados con la salud en la Región de las Américas [Internet]. Organización Panamericana de la Salud; 2017. Disponible en: http://iris.paho.org/xmlui/bitstream/handle/123456789/34114/9789275118782_spa.pdf?sequence=5&isAllowed=y
dc.sourceLeteurtre S, Martinot A, Duhamel A, Proulx F, Grandbastien B, Cotting J, et al. Validation of the paediatric logistic organ dysfunction (PELOD) score: Prospective, observational, multicentre study. Lancet. 2003;362(9379):192–7.
dc.sourceWeiss SL, Fitzgerald JC, Pappachan J, Wheeler D, Jaramillo-Bustamante JC, Salloo A, et al. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med. 2015;191(10):1147–57.
dc.sourceJaramillo-Bustamante JC, Marín-Agudelo A, Fernández-Laverde M, Bareño-Silva J. Epidemiology of sepsis in pediatric intensive care units: First Colombian Multicenter Study. Pediatr Crit Care Med. 2012;13(5):501–8.
dc.sourceRhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017; 43(3):304-377.
dc.sourceFreitas ERFS. Profile and severity of the patients of intensive care units: prospective application of the APACHE II index. Rev Lat Am Enfermagem. 2010;18(3):317–23.
dc.sourceBahl R, Martines J, Ali N, Bhan MK, Carlo W, Chan KY, et al. Research priorities to reduce global mortality from newborn infections by 2015. Pediatr Infect Dis J. 2009;28(1):43–8.
dc.sourceEmrath ET, Fortenberry JD, Travers C, McCracken CE, Hebbar KB. Resuscitation with Balanced Fluids Is Associated with Improved Survival in Pediatric Severe Sepsis. Crit Care Med. 2017;45(7):1177–83.
dc.sourceWatson RS, Carcillo JA, Linde-Zwirble WT, Clermont G, Lidicker J, Angus DC. The epidemiology of severe sepsis in children in the United States. Am J Respir Crit Care Med. 2003;167(5):695–701.
dc.sourceGoldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6(1): 2-8.
dc.sourceRemick DG. Pathophysiology of sepsis. Am J Pathol. 2007; 170(5):1435–44.
dc.sourceCarcillo JA, Podd B, Aneja R, Weiss SL, Hall MW, Cornell TT, et al. Pathophysiology of pediatric multiple organ dysfunction syndrome. Pediatr Crit Care Med. 2017;18(3):32–45.
dc.sourceKissoon N, Uyeki TM. Sepsis and the Global Burden of Disease in Children. JAMA Pediatr. 2016; 170(2):107-8.
dc.sourceRegueira T, Andresen M, Mercado M, Downey P. Physiopathology of acute renal failure during sepsis. Med Intensiva. 2011;35(7):424–32.
dc.sourcePiton G, Belon F, Cypriani B, Regnard J, Puyraveau M, Manzon C, et al. Enterocyte damage in critically ill patients is associated with shock condition and 28-day mortality. Crit Care Med. 2013;41(9):2169–76.
dc.sourceVincent JL, Orbegozo Cortés D, Acheampong A. Current haemodynamic management of septic shock. Press Medicale. 2016;45(4):99–103.
dc.sourceSilva JM, Oliveira AMRR, de Morais SZ, de Araújo LS, Victoria LGF, Marubayashi LY. Influence of central venous oxygen saturation on in-hospital mortality of surgical patients. Rev Bras Anestesiol. 2010;60(6):593–602, 329–34.
dc.sourceFernández-sarmiento J, Carcillo JA, Salinas CM, Galvis EF, López PA, Jagua-gualdrón A. Effect of a Sepsis Educational Intervention on Hospital Stay. 2018; 19(6):321-328.
dc.sourceHanna W, Wong HR. Pediatric Sepsis: Challenges and Adjunctive Therapies. Crit Care Clin. 2013;29(2):203–22.
dc.sourceHartmann AF, Senn MJ. Studies in the metabolism of sodium r-Lactate. Response of normal human subjects to the intravenous injection of sodium r-Lactate. J Clin Invest. 1932;11(2):327–335.
dc.sourceLee JA. Sydney Ringer (1834–1910) and Alexis Hartmann (1898–1964). Anaesthesia. 1981;36(12):1115–21.
dc.sourceChua HR, Venkatesh B, Stachowski E, Schneider AG, Perkins K, Ladanyi S, et al. Plasma-Lyte 148 vs 0.9% saline for fluid resuscitation in diabetic ketoacidosis. J Crit Care. 2012;27(2):138–45.
dc.sourceHoorn EJ. Intravenous fluids: balancing solutions. J Nephrol. 2017;30(4):485–92.
dc.sourceMendes PV, Zampieri FG, Park M. Is There a Role for Balanced Solutions in Septic Patients?. Shock. 2017;47(1):30–4.
dc.sourceDe Backer D, Cortés DO. Characteristics of fluids used for intravascular volume replacement. Best Pract Res Clin Anaesthesiol. 2012;26(4):441–51.
dc.sourceZampieri FG, Azevedo LCP, Corrêa TD, Falavigna M, Machado FR, De Assunção MSC, et al. Study protocol for the Balanced Solution versus Saline in Intensive Care Study (BaSICS): A factorial randomised trial. Crit Care Resusc. 2017;19(2):175–82.
dc.sourceSong JW, Shim JK, Kim NY, Jang J, Kwak YL. The effect of 0.9% saline versus plasmalyte on coagulation in patients undergoing lumbar spinal surgery; a randomized controlled trial. Int J Surg. 2015;20:128–34.
dc.sourceAwad S, Allison SP, Lobo DN. The history of 0.9% saline. Clin Nutr. 2008;27(2):179–88.
dc.sourceYunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association Between a Chloride-Liberal vs Chloride-Restrictive Intravenous Fluid Administration Strategy and Kidney Injury in Critically Ill Adults. Jama. 2012;308(15):1566.
dc.sourceFriedman JN, Beck CE, DeGroot J, Geary DF, Sklansky DJ, Freedman SB. Comparison of Isotonic and Hypotonic Intravenous Maintenance Fluids. JAMA Pediatr. 2015;169(5):445-51.
dc.sourceHandy JM, Soni N. Physiological effects of hyperchloraemia and acidosis. Br J Anaesth. 2008;101(2):141–50.
dc.sourceGonzález-Castro A, Peñasco Martin Y, Ortiz-Lasa M. Reanimación con fluidos: perspectiva actual. Med Clin (Barc). 2016;146(3):128–32.
dc.sourceMiller DJ. Sydney Ringer; physiological saline, calcium and the contraction of the heart. J Physiol . 2004;555(3):585–7.
dc.sourceMorgan TJ, Venkatesh B. Designing ‘ Balanced ’ Crystalloids. 2003;5(4):284-91.
dc.sourceKim SY, Huh KH, Lee JR, Kim SH, Jeong SH, Choi YS. Comparison of the effects of normal saline versus plasmalyte on acid-base balance during living donor kidney transplantation using the Stewart and base excess methods. Transplant Proc. 2013;45(6):2191–6.
dc.sourceWeinberg L, Collins N, Mourik VK, Tan C, Bellomo R. Plasma-Lyte 148: A clinical review. World J Crit Care Med . 2016;5(4):235-50.
dc.sourcePfortmueller CA, Fleischmann E. Acetate-buffered crystalloid fluids: Current knowledge, a systematic review. J Crit Care. 2016;35:96–104.
dc.sourceAksu U, Bezemer R, Yavuz B, Kandil A, Demirci C, Ince C. Balanced vs unbalanced crystalloid resuscitation in a near-fatal model of hemorrhagic shock and the effects on renal oxygenation, oxidative stress, and inflammation. Resuscitation. 2012;83(6):767–73.
dc.sourceMurthi SB, Wise RM, Weglicki WB, Komarov AM, Kramer JH. Mg-gluconate provides superior protection against postischemic dysfunction and oxidative injury compared to Mg-sulfate. Mol Cell Biochem. 2003;245(1–2):141–8.
dc.sourceRochwerg B, Alhazzani W, Sindi A, Heels-Ansdell D, Thabane L, Fox-Robichaud A, et al. Fluid resuscitation in sepsis: A systematic review and network meta-analysis. Ann Intern Med. 2014;161(5):347–55.
dc.sourceStewart PA. Independent and dependent variables of acid-base control. Respir Physiol. 1978;33(1):9–26.
dc.sourceFores-Novales B, Diez-Fores P. Evaluación del equilibrio ácido-base. Aportaciones del método de Stewart. 2016;63(4):212-219.
dc.sourceAkcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007;71(10):1028–35.
dc.sourceSelf WH, Semler MW, Wanderer JP, Wang L, Byrne DW, Collins SP, et al. Balanced Crystalloids versus Saline in Critically Ill Adults. N Engl J Med. 2018;378(9):819–28.
dc.sourceZampieri FG, Ranzani OT, Azevedo LC, Martins ID, Kellum JA, Libório AB. Lactated Ringer Is Associated with Reduced Mortality and Less Acute Kidney Injury in Critically Ill Patients: A Retrospective Cohort Analysis. Crit Care Med. 2016;44(12):2163–70.
dc.sourceVan Regenmortel N, Verbrugghe W, Van den Wyngaert T, Jorens PG. Impact of chloride and strong ion difference on ICU and hospital mortality in a mixed intensive care population. Ann Intensive Care. 2016;6:91.
dc.sourceSemler MW, Wanderer JP, Ehrenfeld JM, Stollings JL, Self WH, Siew ED, et al. Balanced crystalloids versus saline in the intensive care unit: The SALT randomized trial. Am J Respir Crit Care Med. 2017;195(10):1362–72.
dc.sourceWeiss SL, Keele L, Balamuth F, Vendetti N, Ross R, Fitzgerald JC, et al. Crystalloid Fluid Choice and Clinical Outcomes in Pediatric Sepsis: A Matched Retrospective Cohort Study. J Pediatr . 2017;182:304-310.
dc.sourceShaw AD, Raghunathan K, Peyerl FW, Munson SH, Paluszkiewicz SM, Schermer CR. Association between intravenous chloride load during resuscitation and in-hospital mortality among patients with SIRS. Intensive Care Med. 2014;40(12):1897–905.
dc.sourceYoung P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: The SPLIT randomized clinical trial. JAMA . 2015;314(16):1701–10.
dc.sourceLoflin R, Winters ME. Fluid Resuscitation in Severe Sepsis. Emerg Med Clin North Am . 2017;35(1):59–74.
dc.sourceRussell JA, Rush B, Boyd J. Pathophysiology of Septic Shock. Crit Care Clin. 2018;34(1):43–61.
dc.sourceRaghunathan K, Nailer P, Konoske R. What is the ideal crystalloid? Curr Opin Crit Care. 2015;21(4):309–14.
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectSepsis severa
dc.subjectSolución balanceada
dc.subjectAacidosis metabólica
dc.subjectHipercloremia
dc.subjectLesión renal
dc.subjectNiños
dc.titleAsociación entre uso de soluciones balanceadas y lesión renal durante la reanimación hídrica en niños con sepsis
dc.typemasterThesis


Este ítem pertenece a la siguiente institución