dc.contributorSerrano, Rafael
dc.creatorCardenas Torres, Andres Felipe
dc.date.accessioned2019-07-16T13:15:49Z
dc.date.accessioned2019-11-21T18:30:49Z
dc.date.available2019-07-16T13:15:49Z
dc.date.available2019-11-21T18:30:49Z
dc.date.created2019-07-16T13:15:49Z
dc.date.issued2019
dc.identifierhttp://repository.urosario.edu.co/handle/10336/19947
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3061974
dc.description.abstractIn this paper we study optimal investment strategies that maximize expected utility from consumption and terminal wealth in a pure-jump market model where the dynamics of asset prices follow a swithching process and the size of the jump and the trend are dependent on the waiting time between jumps, in addition, the trend is dependent on a dichotomous chain with values in the inter-arrival times. We show that the counting process associated to the arrival times has as compensator a Hazard function that is dependent on the inter-arrival times. This implies that the conditional expected value of the process solves a coupled system of Volterra equations of second kind. As an application, the GOP (growth-optimal portfo- lio) case is considered, where the Volterra system is solved by means of numerical methods in the particular cases in which the inter-arrival times are distributed as hyperexponential and Weibull.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherMaestría en Economía
dc.publisherFacultad de Economía
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.sourceBellman Richard y Kalaba Robert, Dynamic programming and statistical communication theory, Proceedings of the National Academy of Sciences of the United States of America, volume 43, number 8, 749, 1957, National Academy of Sciences.
dc.sourceBensoussan Alain y Keppo Jussi y Sethi Suresh P, Optimal consumption and portfolio de- cisions with partially observed real prices, Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, volume 19, number 2, 215-236, 2004, Elsevier.
dc.sourceCapponiAgostinoyFigueroa-LopezJoseE,DynamicPortfolioOptimizationwithaDefault- able Security and Regime-Switching, Mathematical Finance, volume 24, number 2, 2017-249, 2014, Wiley Online Library.
dc.sourceCeci Claudia, Optimal Investment Problems with Marked Point Processes, Seminar on Stochastic Analysis, Random Fields and Applications VI, 385–412, 2011, Springer.
dc.sourceDi Crescenzo Antonio and Ratanov Nikita, On jump-diffusion processes with regime switch- ing: martingale approach. ALEA, 12(2), 573-596.
dc.sourceElliott Robert J y Siu Tak Kuen, Robust optimal portfolio choice under Markovian regime- switching model ,Methodology and Computing in Applied Probability, volume 11, number 2, 145-157, 2009, Springer.
dc.sourceElton Edwin J y Gruber Martin J, On the Maximization of the Geometric Mean with Lognormal Return Distribution: Erratum, Management Science, volume 21, number 5, 610- 610, 1975, Informs.
dc.sourceFei Weiyin, Optimal consumption and portfolio under inflation and Markovian switching, Stochastics An International Journal of Probability and Stochastic Processes, volume 85, number 2 , 272-285, 2013, Taylor & Francis.
dc.sourceJeanblanc Monique and Rutkowski Marek, Default risk and hazard process, Mathematical Finance Bachelier Congress 2000,281–312, 2002, Springer.
dc.sourceJeanblanc Monique, Yor Marc y Chesney Marc. Mathematical methods for financial mar- kets. Springer Science and Business. 2009.
dc.sourceKaratzas, I., & Shreve, S. E. Methods of mathematical finance (Vol. 39, pp. xvi+-407), (1998). New York: Springer.
dc.sourceKarr Alan, Point processes and their statistical inference, 2017, Routledge. 26
dc.sourceKelly Jr John L, A new interpretation of information rate, The Kelly Capital Growth Investment Criterion: Theory and Practice, 24-34, 2011, World Scientific.
dc.sourceKlebaner Fima C, Introduction to stochastic calculus with applications, 2012, World Sci- entific Publishing Company.
dc.sourceKolesnik Alexander D y Ratanov Nikita. Telegraph process and option pricing. Heidelberg: Springer, 2013.
dc.sourceLinz Peter, Analytical and numerical methods for Volterra equations, volume 7, 1985, Siam.
dc.sourceLopez Oscar y Serrano Rafael, Martingale approach to optimal portfolio-consumption prob- lems in Markov-modulated pure-jump models, Stochastic Models, volume 31, number 2, 261-291, 2015, Taylor & Francis.
dc.sourceMaier Steven F y Peterson David W y Vander Weide James H, monte carlo investigation of characteristics of optimal geometric mean portfolios, journal of Financial and Quantitative Analysis, volume 12, number 2, 215.233, 1977, Cambridge University Press.
dc.sourceMerton Robert, Lifetime portfolio selection under uncertainty: The continuous time case. Review of Economics and Statistics 51 (3), 247-257, 1969.
dc.sourceRatanovNikita,Dampedjump-telegraphprocesses,Statistics&ProbabilityLetters,volume 83, number 10, 2282-2290, 2013, Elsevier.
dc.sourceRatanov Nikita, Option pricing under jump-diffusion processes with regime switching, Methodology and Computing in Applied Probability, volume 18, number 3, 829-845, 2016, Springer.
dc.sourceRatanov Nikita, Telegraph processes with random jumps and complete market models, Methodology and Computing in Applied Probability, volume 17, number 3, 677-695, 2015, Springer.
dc.sourceScaillet Olivier, Treccani Adrien y Trevisan Christopher, High-Frequency Jump Analysis of the Bitcoin Market, Swiss Finance Institute Research Paper No. 17-19. 2017.
dc.subjectEcuaciones de Volterra de segundo tipo
dc.titleEstrategias óptimas de inversión y consumo en un mercado con saltos alternados dependientes de los tiempos inter-arribo
dc.typemasterThesis


Este ítem pertenece a la siguiente institución