Tesis
El teorema de foliación simpléctica y la grassmanniana restringida
Registro en:
Autor
Alvarado, Claudia Damaris
Institución
Resumen
Los contenidos de este trabajo son los siguientes. En la sección 2 comenzamos repasando las definiciones de variedades simplécticas y variedades de Poisson en dimensión infinita. Introducimos la distribución característica, y probamos el teorema de foliación simpléctica. Para dar parte de su demostración antes probamos el teorema de Stefan-Sussmann que caracteriza la integrabilidad de distribuciones singulares. En la sección 3 introducimos los espacios de Poisson en dimensión infinita, y en particular caracterizamos los espacios de Banach Lie-Poisson. Definimos la noción de hojas simplécticas, dando un método general para construirlas. La sección 4 trata de la Grassmanniana restringida. Probamos varias propiedades básicas de esta Grassmanniana, incluyendo diversas caracterizaciones y su estructura de variedad de Banach. En la sección 5 construimos un espacio de Banach Lie-Poisson donde la Grassmanniana restringida es una hoja simpléctica. Aquí resulta de importancia notar que la Grassmanniana restringida se puede caracterizar como una órbita coadjunta por una acción afín. Facultad de Ciencias Exactas