dc.creatorVidela, Javier A.
dc.creatorNatarajan, Sundararajan
dc.creatorBordas, Stéphane P. A.
dc.date.accessioned2019-10-30T15:28:59Z
dc.date.available2019-10-30T15:28:59Z
dc.date.created2019-10-30T15:28:59Z
dc.date.issued2019
dc.identifierComputers and Structures, Volumen 220,
dc.identifier00457949
dc.identifier10.1016/j.compstruc.2019.04.009
dc.identifierhttps://repositorio.uchile.cl/handle/2250/172437
dc.description.abstractA new n-noded polygonal plate element is proposed for the analysis of plate structures comprising of thin and thick members. The formulation is based on the discrete Kirchhoff Mindlin theory. On each side of the polygonal element, discrete shear constraints are considered to relate the kinematical and the independent shear strains. The proposed element: (a)has proper rank; (b)passes patch test for both thin and thick plates; (c)is free from shear locking and (d)yields optimal convergence rates in L2-norm and H1-semi-norm. The accuracy and the convergence properties are demonstrated with a few benchmark examples.
dc.languageen
dc.publisherElsevier Ltd
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceComputers and Structures
dc.subjectDiscrete Kirchhoff Mindlin theory
dc.subjectNumerical integration
dc.subjectPolygonal element
dc.subjectReissner-Mindlin plate theory
dc.subjectSerendipity shape functions
dc.subjectShear locking
dc.subjectWachspress interpolants
dc.titleA new locking-free polygonal plate element for thin and thick plates based on Reissner-Mindlin plate theory and assumed shear strain fields
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución