dc.creatorCanals, Catalina
dc.creatorCanals, Andrea
dc.date.accessioned2019-10-30T15:26:03Z
dc.date.available2019-10-30T15:26:03Z
dc.date.created2019-10-30T15:26:03Z
dc.date.issued2019
dc.identifierJournal of Statistical Computation and Simulation, Volumen 89, Issue 10, 2019, Pages 1887-1898
dc.identifier15635163
dc.identifier00949655
dc.identifier10.1080/00949655.2019.1602125
dc.identifierhttps://repositorio.uchile.cl/handle/2250/172397
dc.description.abstractThe central limit theorem indicates that when the sample size goes to infinite, the sampling distribution of means tends to follow a normal distribution; it is the basis for the most usual confidence interval and sample size formulas. This study analyzes what sample size is large enough to assume that the distribution of the estimator of a proportion follows a Normal distribution. Also, we propose the use of a correction factor in sample size formulas to ensure a confidence level even when the central limit theorem does not apply for these distributions.
dc.languageen
dc.publisherTaylor and Francis Ltd.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceJournal of Statistical Computation and Simulation
dc.subjectBernoulli distribution
dc.subjectcentral limit theorem
dc.subjectconfidence interval
dc.subjectproportion
dc.subjectSample size
dc.titleWhen is n large enough? Looking for the right sample size to estimate proportions
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución