dc.creatorAlvarez, Edgardo
dc.creatorCastillo, Samuel
dc.creatorPinto, Manuel
dc.date.accessioned2019-10-30T15:22:38Z
dc.date.available2019-10-30T15:22:38Z
dc.date.created2019-10-30T15:22:38Z
dc.date.issued2019
dc.identifierBoundary Value Problems, Volumen 2019, Issue 1, 2019,
dc.identifier16872770
dc.identifier16872762
dc.identifier10.1186/s13661-019-1217-x
dc.identifierhttps://repositorio.uchile.cl/handle/2250/172305
dc.description.abstractIn this paper we study a new class of functions, which we call (ω, c) -pseudo periodic functions. This collection includes pseudo periodic, pseudo anti-periodic, pseudo Bloch-periodic, and unbounded functions. We prove that the set conformed by these functions is a Banach space with a suitable norm. Furthermore, we show several properties of this class of functions as the convolution invariance. We present some examples and a composition result. As an application, we prove the existence and uniqueness of (ω, c) -pseudo periodic mild solutions to the first order abstract Cauchy problem on the real line. Also, we establish some sufficient conditions for the existence of positive (ω, c) -pseudo periodic solutions to the Lasota–Wazewska equation with unbounded oscillating production of red cells.
dc.languageen
dc.publisherSpringer International Publishing
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceBoundary Value Problems
dc.subject(ω, c) -pseudo periodic functions
dc.subjectAnti-periodic
dc.subjectCompleteness
dc.subjectConvolution invariance
dc.subjectPeriodic
dc.title(ω, c) -Pseudo periodic functions, first order Cauchy problem and Lasota–Wazewska model with ergodic and unbounded oscillating production of red cells
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución