dc.creatorAmster, Pablo
dc.creatorKuna, Mariel Paula
dc.creatorRobledo Veloso, Gonzalo
dc.date.accessioned2019-10-22T03:11:13Z
dc.date.available2019-10-22T03:11:13Z
dc.date.created2019-10-22T03:11:13Z
dc.date.issued2019
dc.identifierCommunications on Pure and Applied Analysis, Volumen 18, Issue 4, 2019, Pages 1695-1709
dc.identifier15535258
dc.identifier15340392
dc.identifier10.3934/cpaa.2019080
dc.identifierhttps://repositorio.uchile.cl/handle/2250/171886
dc.description.abstractSmall non-autonomous perturbations around an equilibrium of a nonlinear delayed system are studied. Under appropriate assumptions, it is shown that the number of T-periodic solutions lying inside a bounded domain Ω ⊂ R N is, generically, at least |χ ± 1| + 1, where χ denotes the Euler characteristic of Ω. Moreover, some connections between the associated fixed point operator and the Poincaré operator are explored.
dc.languageen
dc.publisherAmerican Institute of Mathematical Sciences
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceCommunications on Pure and Applied Analysis
dc.subjectDelay differential systems
dc.subjectFixed points
dc.subjectMultiple periodic solutions
dc.subjectPoincaré operator
dc.subjectTopological degree
dc.titleMultiple solutions for periodic perturbations of a delayed autonomous system near an equilibrium
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución