dc.creatorMartínez, Servet
dc.date.accessioned2019-10-15T12:25:38Z
dc.date.available2019-10-15T12:25:38Z
dc.date.created2019-10-15T12:25:38Z
dc.date.issued2019
dc.identifierAdvances in Applied Mathematics, Volumen 110,
dc.identifier10902074
dc.identifier01968858
dc.identifier10.1016/j.aam.2019.03.001
dc.identifierhttps://repositorio.uchile.cl/handle/2250/171747
dc.description.abstractIn the paper ‘A probabilistic analysis of a discrete-time evolution in recombination’ [4] the evolution of the recombination transformation Ξ=∑δρδ⨂J∈δμJ was described by a Markov chain (Yn) on a set of partitions, which converges to the finest partition. Our main results were the description of the geometric decay rate to the limit and the quasi-stationary behavior of the Markov chain when conditioned on the event that the chain does not hit the limit. All these results continue to be true, but the Markov chain (Yn) that was claimed to satisfy Ξn=E(⨂J∈Yn μJ) required to be modified. This is done in this Corrigendum.
dc.languageen
dc.publisherAcademic Press Inc.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceAdvances in Applied Mathematics
dc.subjectGeometric decay rate
dc.subjectMarkov chain
dc.subjectPartition
dc.subjectPopulation genetics
dc.subjectQuasi-stationary distribution
dc.subjectRecombination
dc.titleCorrigendum to “A probabilistic analysis of a discrete-time evolution in recombination” (A probabilistic analysis of a discrete-time evolution in recombination (2017) 91 (115–136), (S0196885817300933), (10.1016/j.aam.2017.06.004))
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución