dc.creatorAmigo, Nicolás
dc.creatorSepúlveda Macías, Matías
dc.creatorGutiérrez Gallardo, Gonzalo
dc.date.accessioned2019-10-14T15:41:02Z
dc.date.available2019-10-14T15:41:02Z
dc.date.created2019-10-14T15:41:02Z
dc.date.issued2019
dc.identifierMaterials Chemistry and Physics 225 (2019) 159–168
dc.identifier02540584
dc.identifier10.1016/j.matchemphys.2018.12.050
dc.identifierhttps://repositorio.uchile.cl/handle/2250/171516
dc.description.abstractMetallic glasses with embedded crystalline phases have been experimentally reported to exhibit enhanced mechanical properties. To further explore this observation, we employed molecular dynamics simulations to study Cu50Zr50/B2eCuZr nanolaminates subjected to tensile tests under iso–stress and iso–strain conditions. The onset of plasticity, martensitic transformation, and failure mechanisms were inspected at atomic level. It was found that most of the B2eCuZr phase undergoes martensitic transformation, enhancing the strength of the nanolaminate thanks to the second elastic regime developed in the crystalline layer. Interestingly, this transformation is promoted due to the rearrangement of Cu atoms at the amorphous/crystalline interface, without the direct influence of shear transformation zones. Regarding the failure mechanism, it was observed that it depends on the deformation condition: the iso–stress condition leads to void formation at the interface, whereas the iso–strain condition triggers B2 phase bands amorphization. Finally, tension–compression tests on Cu50Zr50/ B2eCuZr nanolaminates under iso–strain revealed that the crystalline layer undergoes reversible B2–monoclinic transformation, decreasing the dissipated energy during mechanical loading when compared to the pure metallic glass sample.
dc.languageen
dc.publisherElsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceMaterials Chemistry and Physics
dc.subjectMartensitic transformation
dc.subjectMetallic glasses
dc.subjectMolecular dynamics simulation
dc.subjectTensile test
dc.titleEnhancement of mechanical properties of metallic glass nanolaminates via martensitic transformation: atomistic deformation mechanism
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución