dc.creatorPoblete, Verónica
dc.creatorPoblete, Felipe
dc.creatorPozo, Juan C.
dc.date.accessioned2019-10-11T17:32:57Z
dc.date.available2019-10-11T17:32:57Z
dc.date.created2019-10-11T17:32:57Z
dc.date.issued2019
dc.identifierJournal of Evolution Equations, Volumen 19, Issue 2, 2019, Pages 361-386
dc.identifier14243199
dc.identifier10.1007/s00028-019-00478-9
dc.identifierhttps://repositorio.uchile.cl/handle/2250/171474
dc.description.abstract© 2019, Springer Nature Switzerland AG. This paper is concerned to study the existence and uniqueness of solution of neutral type differential equations, by using the maximal regularity property of the first-order abstract Cauchy problem with finite delay on Lebesgue spaces defined at the line. The main tools that we use to achieve our goals are an operator-valued version of Miklhin’s Fourier multiplier theorem, weighted Sobolev spaces on the real line and fixed point arguments.
dc.languageen
dc.publisherBirkhauser Verlag AG
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceJournal of Evolution Equations
dc.subjectMathematics (miscellaneous)
dc.titleStrong solutions of a neutral type equation with finite delay
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución