| dc.creator | Poblete, Verónica | |
| dc.creator | Poblete, Felipe | |
| dc.creator | Pozo, Juan C. | |
| dc.date.accessioned | 2019-10-11T17:32:57Z | |
| dc.date.available | 2019-10-11T17:32:57Z | |
| dc.date.created | 2019-10-11T17:32:57Z | |
| dc.date.issued | 2019 | |
| dc.identifier | Journal of Evolution Equations, Volumen 19, Issue 2, 2019, Pages 361-386 | |
| dc.identifier | 14243199 | |
| dc.identifier | 10.1007/s00028-019-00478-9 | |
| dc.identifier | https://repositorio.uchile.cl/handle/2250/171474 | |
| dc.description.abstract | © 2019, Springer Nature Switzerland AG. This paper is concerned to study the existence and uniqueness of solution of neutral type differential equations, by using the maximal regularity property of the first-order abstract Cauchy problem with finite delay on Lebesgue spaces defined at the line. The main tools that we use to achieve our goals are an operator-valued version of Miklhin’s Fourier multiplier theorem, weighted Sobolev spaces on the real line and fixed point arguments. | |
| dc.language | en | |
| dc.publisher | Birkhauser Verlag AG | |
| dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
| dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
| dc.source | Journal of Evolution Equations | |
| dc.subject | Mathematics (miscellaneous) | |
| dc.title | Strong solutions of a neutral type equation with finite delay | |
| dc.type | Artículo de revista | |