dc.creatorPérez-Aros, Pedro
dc.creatorThibault, Lionel
dc.date.accessioned2019-10-11T17:31:21Z
dc.date.available2019-10-11T17:31:21Z
dc.date.created2019-10-11T17:31:21Z
dc.date.issued2019
dc.identifierJournal of Convex Analysis, Volumen 26, Issue 3, 2019,
dc.identifier09446532
dc.identifierhttps://repositorio.uchile.cl/handle/2250/171362
dc.description.abstract© 2019 Heldermann Verlag. All rights reserved.In this work we prove that if X is a complete locally convex space and {equation presented} is a function such that f -x∗attains its minimum for every x∗∈ U, where U is an open set with respect to the Mackey topology in X∗, then for every γ ∈ R and x∗∈ U the set {equation presented} is relatively weakly compact. This result corresponds to an extension of Theorem 2.4 in [J. Saint Raymond, Mediterr. J. Math. 10 (2013), no. 2, 927-940]. Directional James compactness theorems are also derived.
dc.languageen
dc.publisherHeldermann Verlag
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceJournal of Convex Analysis
dc.subjectConjugate functions
dc.subjectConvex functions
dc.subjectEpi-pointed functions
dc.subjectInf-compact functions
dc.subjectInf-convolution
dc.subjectWeak compactness
dc.titleWeak compactness of sublevel sets in complete locally convex spaces
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución