dc.creatorBravo, Mario
dc.creatorCominetti, Roberto
dc.creatorPavez-Signé, Matías
dc.date.accessioned2019-10-11T17:31:07Z
dc.date.available2019-10-11T17:31:07Z
dc.date.created2019-10-11T17:31:07Z
dc.date.issued2019
dc.identifierMathematical Programming, Volumen 175, Issue 1-2, 2019, Pages 241-262
dc.identifier14364646
dc.identifier00255610
dc.identifier10.1007/s10107-018-1240-1
dc.identifierhttps://repositorio.uchile.cl/handle/2250/171296
dc.description.abstract© 2018, Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society. We study the convergence of an inexact version of the classical Krasnosel’skii–Mann iteration for computing fixed points of nonexpansive maps. Our main result establishes a new metric bound for the fixed-point residuals, from which we derive their rate of convergence as well as the convergence of the iterates towards a fixed point. The results are applied to three variants of the basic iteration: infeasible iterations with approximate projections, the Ishikawa iteration, and diagonal Krasnosels’kii–Mann schemes. The results are also extended to continuous time in order to study the asymptotics of nonautonomous evolution equations governed by nonexpansive operators.
dc.languageen
dc.publisherSpringer Verlag
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceMathematical Programming
dc.subjectEvolution equations
dc.subjectFixed point iterations
dc.subjectNonexpansive maps
dc.subjectRates of convergence
dc.titleRates of convergence for inexact Krasnosel’skii–Mann iterations in Banach spaces
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución