dc.creatorKwak, Chulkwang
dc.creatorMuñoz, Claudio
dc.creatorPoblete, Felipe
dc.creatorPozo, Juan C.
dc.date.accessioned2019-10-11T17:30:06Z
dc.date.available2019-10-11T17:30:06Z
dc.date.created2019-10-11T17:30:06Z
dc.date.issued2019
dc.identifierJournal des Mathematiques Pures et Appliquees, Volumen 127,
dc.identifier00217824
dc.identifier10.1016/j.matpur.2018.08.005
dc.identifierhttps://repositorio.uchile.cl/handle/2250/171252
dc.description.abstract© 2018 Elsevier Masson SASThe Boussinesq abcd system is a 4-parameter set of equations posed in Rt×Rx, originally derived by Bona, Chen and Saut [11,12] as first order 2-wave approximations of the incompressible and irrotational, two dimensional water wave equations in the shallow water wave regime, in the spirit of the original Boussinesq derivation [17]. Among many particular regimes, depending each of them in terms of the value of the parameters (a,b,c,d) present in the equations, the generic regime is characterized by the setting b,d>0 and a,c<0. If additionally b=d, the abcd system is Hamiltonian. The equations in this regime are globally well-posed in the energy space H1×H1, provided one works with small solutions [12]. In this paper, we investigate decay and the scattering problem in this regime, which is characterized as having (quadratic) long-range nonlinearities, very weak linear decay O(t−1/3) because of the one dimensional setting, and existence of non scattering solutions
dc.languageen
dc.publisherElsevier Masson SAS
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceJournal des Mathematiques Pures et Appliquees
dc.subjectabcd
dc.subjectBoussinesq system
dc.subjectDecay
dc.subjectHamiltonian
dc.subjectScattering
dc.titleThe scattering problem for Hamiltonian ABCD Boussinesq systems in the energy space
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución