dc.creatorFelmer Aichele, Patricio
dc.creatorWang, Ying
dc.date.accessioned2019-05-31T15:33:57Z
dc.date.available2019-05-31T15:33:57Z
dc.date.created2019-05-31T15:33:57Z
dc.date.issued2019
dc.identifierDiscrete and Continuous Dynamical Systems- Series A, Volumen 39, Issue 1, 2019, Pages 369-393.
dc.identifier15535231
dc.identifier10780947
dc.identifier10.3934/dcds.2019015
dc.identifierhttps://repositorio.uchile.cl/handle/2250/169685
dc.description.abstractThis paper is concerned with the qualitative properties of the solutions of mixed integro-differential equation (equation presented) with N ≥ 1, M ≥ 1 and ϵ 2 (0; 1). We study decay and symmetry properties of the solutions to this equation. Difficulties arise due to the mixed character of the integro-differential operators. Here, a crucial role is played by a version of the Hopf's Lemma we prove in our setting. In studying the decay, we construct appropriate super and sub solutions and we use the moving planes method to prove the symmetry properties.
dc.languageen
dc.publisherAmerican Institute of Mathematical Sciences
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceDiscrete and Continuous Dynamical Systems- Series A
dc.subjectDecay
dc.subjectHopf's Lemma
dc.subjectIntegro-differential equation
dc.subjectSymmetry
dc.titleQualitative properties of positive solutions for mixed integro-differential equations
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución