dc.creatorClerc Gavilán, Marcel
dc.creatorCoulibaly, Saliya
dc.creatorFerré, Michelle
dc.creatorRojas, Rene
dc.date.accessioned2019-05-31T15:21:03Z
dc.date.available2019-05-31T15:21:03Z
dc.date.created2019-05-31T15:21:03Z
dc.date.issued2018
dc.identifierChaos, Volumen 28, Issue 8, 2018
dc.identifier10541500
dc.identifier10.1063/1.5025038
dc.identifierhttps://repositorio.uchile.cl/handle/2250/169488
dc.description.abstractCoupled nonlinear oscillators can present complex spatiotemporal behaviors. Here, we report the coexistence of coherent and incoherent domains, called chimera states, in an array of identical Duffing oscillators coupled to their nearest neighbors. The chimera states show a significant variation of amplitude in the desynchronized domain. These intriguing states are observed in the bistability region between a homogeneous state and a spatiotemporal chaotic one. These dynamical behaviors are characterized by their Lyapunov spectra and their global phase coherence order parameter. The local coupling between oscillators prevents one domain from invading the other one. Depending on initial conditions, a family of chimera states appear, organized in a snaking-like diagram.
dc.languageen
dc.publisherAmerican Institute of Physics Inc.
dc.sourceChaos
dc.subjectStatistical and Nonlinear Physics
dc.subjectMathematical Physics
dc.subjectPhysics and Astronomy (all)
dc.subjectApplied Mathematics
dc.titleChimera states in a Duffing oscillators chain coupled to nearest neighbors
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución