dc.creatorFelmer Aichele, Patricio
dc.creatorIkoma, Norihisa
dc.date.accessioned2019-05-31T15:20:00Z
dc.date.available2019-05-31T15:20:00Z
dc.date.created2019-05-31T15:20:00Z
dc.date.issued2018
dc.identifierJournal of Functional Analysis, Volumen 275, Issue 8, 2018, Pages 2162-2196
dc.identifier10960783
dc.identifier00221236
dc.identifier10.1016/j.jfa.2018.07.009
dc.identifierhttps://repositorio.uchile.cl/handle/2250/169423
dc.description.abstractIn this paper, we consider the existence (and nonexistence) of solutions to −Mλ,Λ ±(u″)+V(x)u=f(u)inR where Mλ,Λ + and Mλ,Λ − denote the Pucci operators with 0<λ≤Λ<∞ V(x) is a bounded function, f(s) is a continuous function and its typical example is a power-type nonlinearity f(s)=|s|p−1s (p>1). In particular, we are interested in positive solutions which decay at infinity, and the existence (and nonexistence) of such solutions is proved.
dc.languageen
dc.publisherAcademic Press Inc.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceJournal of Functional Analysis
dc.subjectLeray–Schauder degree
dc.subjectPositive solutions
dc.subjectPucci operators
dc.titleExistence and nonexistence of positive solutions to some fully nonlinear equation in one dimension
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución