dc.creatorDaniilidis, Aris
dc.creatorPetitjean, Colin
dc.date.accessioned2019-05-31T15:19:12Z
dc.date.available2019-05-31T15:19:12Z
dc.date.created2019-05-31T15:19:12Z
dc.date.issued2018
dc.identifierSet-Valued and Variational Analysis, Volumen 26, Issue 1, 2018, Pages 143-157
dc.identifier18770541
dc.identifier09276947
dc.identifier10.1007/s11228-017-0439-2
dc.identifierhttps://repositorio.uchile.cl/handle/2250/169349
dc.description.abstractIn this work we are interested in the Demyanov–Ryabova conjecture for a finite family of polytopes. The conjecture asserts that after a finite number of iterations (successive dualizations), either a 1-cycle or a 2-cycle eventually comes up. In this work we establish a strong version of this conjecture under the assumption that the initial family contains “enough minimal polytopes” whose extreme points are “well placed”.
dc.languageen
dc.publisherSpringer Netherlands
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceSet-Valued and Variational Analysis
dc.subjectExhauster
dc.subjectExtreme point
dc.subjectPolytope
dc.subjectSubdifferential
dc.subjectSublinear function
dc.titleA Partial Answer to the Demyanov-Ryabova Conjecture
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución