dc.creatorCobo, Milton
dc.creatorGutiérrez Romo, Rodolfo Joaquín
dc.creatorMaass Sepúlveda, Alejandro
dc.date.accessioned2019-05-31T15:19:09Z
dc.date.available2019-05-31T15:19:09Z
dc.date.created2019-05-31T15:19:09Z
dc.date.issued2018
dc.identifierNonlinearity, Volumen 31, Issue 4, 2018, Pages 1121-1154
dc.identifier13616544
dc.identifier09517715
dc.identifier10.1088/1361-6544/aa9a87
dc.identifierhttps://repositorio.uchile.cl/handle/2250/169333
dc.description.abstractThe construction of affine interval exchange maps (IEMs) with wandering intervals that are semi-conjugate to a given self-similar IEM is strongly related to the existence of the so-called minimal sequences associated with local potentials, which are certain elements of the substitution subshift arising from the given IEM. In this article, under the condition called unique representation property, we characterize such minimal sequences for potentials coming from non-real eigenvalues of the substitution matrix. We also give conditions on the slopes of the affine extensions of a self-similar IEM that determine whether it exhibits a wandering interval or not.
dc.languageen
dc.publisherInstitute of Physics Publishing
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceNonlinearity
dc.subjectaffine interval exchange maps
dc.subjectinterval exchange maps
dc.subjectsubstitution dynamical systems
dc.titleCharacterization of minimal sequences associated with self-similar interval exchange maps
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución