dc.creatorCorrea, R.
dc.creatorHantoute, A.
dc.creatorLópez-Cerdá, Marco
dc.date.accessioned2019-05-31T15:19:07Z
dc.date.available2019-05-31T15:19:07Z
dc.date.created2019-05-31T15:19:07Z
dc.date.issued2018
dc.identifierJournal of Convex Analysis, Volumen 25, Issue 4, 2018
dc.identifier09446532
dc.identifierhttps://repositorio.uchile.cl/handle/2250/169325
dc.description.abstractWe generalize and improve the original characterization given by Valadier [18, Theorem 1] of the subdifferential of the pointwise supremum of convex functions, involving the subdifferentials of the data functions at nearby points. We remove the continuity assumption made in that work and obtain a general formula for such a subdiferential. In particular, when the supremum is continuous at some point of its domain, but not necessarily at the reference point, we get a simpler version which gives rise to the Valadier formula. Our starting result is the characterization given in [11, Theorem 4], which uses the epsilon-subdifferential at the reference point.
dc.languageen
dc.publisherHeldermann Verlag
dc.sourceJournal of Convex Analysis
dc.subjectConvex functions
dc.subjectFenchel subdifferential
dc.subjectPointwise supremum function
dc.subjectValadier-like formulas
dc.titleValadier-like formulas for the supremum function I
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución