dc.creatorCorrea, Rafael
dc.creatorSalas, David
dc.creatorThibault, Lionel
dc.date.accessioned2019-05-31T15:18:56Z
dc.date.available2019-05-31T15:18:56Z
dc.date.created2019-05-31T15:18:56Z
dc.date.issued2018
dc.identifierJournal of Mathematical Analysis and Applications, Volumen 457, Issue 2, 2018, Pages 1307-1332
dc.identifier10960813
dc.identifier0022247X
dc.identifier10.1016/j.jmaa.2016.08.064
dc.identifierhttps://repositorio.uchile.cl/handle/2250/169277
dc.description.abstractBased on a fundamental work of R. B. Holmes from 1973, we study differentiability properties of the metric projection onto prox-regular sets. We show that if the set is a nonconvex body with a Cp+1-smooth boundary, then the projection is Cp-smooth near suitable open truncated normal rays, which are determined only by the function of prox-regularity. A local version of the same result is established as well, namely, when the smoothness of the boundary and the prox-regularity of the set are assumed only near a fixed point. Finally, similar results are derived when the prox-regular set is itself a Cp+1-submanifold.
dc.languageen
dc.publisherAcademic Press Inc.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceJournal of Mathematical Analysis and Applications
dc.subjectDistance function
dc.subjectMetric projection
dc.subjectNonconvex body
dc.subjectNormal cone
dc.subjectProx-regular set
dc.subjectSubmanifold
dc.titleSmoothness of the metric projection onto nonconvex bodies in Hilbert spaces
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución