dc.creatorRichmond Navarro, Gustavo
dc.creatorCalderón Muñoz, Williams
dc.creatorLeBoeuf, Richard
dc.creatorCastillo, Pablo
dc.date.accessioned2019-05-29T13:38:41Z
dc.date.available2019-05-29T13:38:41Z
dc.date.created2019-05-29T13:38:41Z
dc.date.issued2017
dc.identifierIEEE Transactions on Sustainable Energy, Volumen 8, Issue 1, 2017, Pages 425-430
dc.identifier19493029
dc.identifier10.1109/TSTE.2016.2604082
dc.identifierhttps://repositorio.uchile.cl/handle/2250/168966
dc.description.abstractA model of the power coefficient of a mid-scale Magnus wind turbine using numerical solutions of the Blade Element Momentum Theory and symbolic regression is presented. A direct method is proposed for solving the nonlinear system of equations which govern the phenomena under study. The influence of the tip-speed ratio and the number, aspect ratio, and the angular speed of the cylinders on the turbine performance is obtained. Results show that the maximum power coefficient is on the order of 0.2, which is obtained with two low aspect ratio cylinders, a dimensionless cylinder speed ratio of 2, and a turbine tip-speed ratio between 2 and 3. The predicted power coefficient at low tip-speed ratio suggests that a Magnus turbine may be adequate in the urban environment.
dc.languageen
dc.publisherIEEE
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceIEEE Transactions on Sustainable Energy
dc.subjectBlade element momentum theory
dc.subjectMagnus wind turbine
dc.subjectSymbolic regression
dc.titleA Magnus Wind Turbine Power Model Based on Direct Solutions Using the Blade Element Momentum Theory and Symbolic Regression
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución