dc.creatorHladký, Jan
dc.creatorKomlós, János
dc.creatorPiguet, Diana
dc.creatorSimonovits, Miklós
dc.creatorStein, Maya
dc.creatorSzemerédi, Endre
dc.date.accessioned2019-05-29T13:30:03Z
dc.date.available2019-05-29T13:30:03Z
dc.date.created2019-05-29T13:30:03Z
dc.date.issued2017
dc.identifierSIAM Journal on Discrete Mathematics, Volumen 31, Issue 2, 2017, Pages 1072-1148
dc.identifier08954801
dc.identifier10.1137/140982878
dc.identifierhttps://repositorio.uchile.cl/handle/2250/168897
dc.description.abstractThis is the last of a series of four papers in which we prove the following relaxation of the Loebl-Komlós-Sós conjecture: For every α > 0 there exists a number k0 such that for every k > k0, every n-vertex graph G with at least (1/2 + α)n vertices of degree at least (1 + α)k contains each tree T of order k as a subgraph. In the first two papers of this series, we decomposed the host graph G and found a suitable combinatorial structure inside the decomposition. In the third paper, we refined this structure and proved that any graph satisfying the conditions of the above approximate version of the Loebl-Komlós-Sós conjecture contains one of ten specific configurations. In this paper we embed the tree T in each of the ten configurations.
dc.languageen
dc.publisherSociety for Industrial and Applied Mathematics Publications
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceSIAM Journal on Discrete Mathematics
dc.subjectExtremal graph theory
dc.subjectGraph decomposition
dc.subjectLoebl-Komlós-Sós conjecture
dc.subjectRegularity lemma
dc.subjectSparse graph
dc.subjectTree embedding
dc.titleThe approximate Loebl-Komlós-Sós conjecture IV: Embedding techniques and the proof of the main result
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución