dc.creatorLang, Richard
dc.creatorSchaudt, Oliver
dc.creatorStein, Maya
dc.date.accessioned2019-05-29T13:30:02Z
dc.date.available2019-05-29T13:30:02Z
dc.date.created2019-05-29T13:30:02Z
dc.date.issued2017
dc.identifierSIAM Journal on Discrete Mathematics, Volumen 31, Issue 2, 2017, Pages 1374-1402
dc.identifier08954801
dc.identifier10.1137/15M104222X
dc.identifierhttps://repositorio.uchile.cl/handle/2250/168896
dc.description.abstractWe show that for any coloring of the edges of the complete bipartite graph Kn,n with three colors there are five disjoint monochromatic cycles which together cover all but o(n) of the vertices. In the same situation, 18 disjoint monochromatic cycles together cover all vertices.
dc.languageen
dc.publisherSociety for Industrial and Applied Mathematics Publications
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceSIAM Journal on Discrete Mathematics
dc.subjectComplete bipartite graph
dc.subjectMonochromatic cycle partition
dc.subjectRamsey-type problem
dc.titleAlmost partitioning A 3-edge-colored Kn,n into five monochromatic cycles
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución