dc.creator | Lang, Richard | |
dc.creator | Schaudt, Oliver | |
dc.creator | Stein, Maya | |
dc.date.accessioned | 2019-05-29T13:30:02Z | |
dc.date.available | 2019-05-29T13:30:02Z | |
dc.date.created | 2019-05-29T13:30:02Z | |
dc.date.issued | 2017 | |
dc.identifier | SIAM Journal on Discrete Mathematics, Volumen 31, Issue 2, 2017, Pages 1374-1402 | |
dc.identifier | 08954801 | |
dc.identifier | 10.1137/15M104222X | |
dc.identifier | https://repositorio.uchile.cl/handle/2250/168896 | |
dc.description.abstract | We show that for any coloring of the edges of the complete bipartite graph Kn,n with three colors there are five disjoint monochromatic cycles which together cover all but o(n) of the vertices. In the same situation, 18 disjoint monochromatic cycles together cover all vertices. | |
dc.language | en | |
dc.publisher | Society for Industrial and Applied Mathematics Publications | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
dc.source | SIAM Journal on Discrete Mathematics | |
dc.subject | Complete bipartite graph | |
dc.subject | Monochromatic cycle partition | |
dc.subject | Ramsey-type problem | |
dc.title | Almost partitioning A 3-edge-colored Kn,n into five monochromatic cycles | |
dc.type | Artículo de revista | |