dc.creatorRamírez Cabrera, Héctor
dc.creatorSossa, David
dc.date.accessioned2019-05-29T13:10:43Z
dc.date.available2019-05-29T13:10:43Z
dc.date.created2019-05-29T13:10:43Z
dc.date.issued2017
dc.identifierJ Optim Theory Appl (2017) 172:649–668
dc.identifier15732878
dc.identifier00223239
dc.identifier10.1007/s10957-016-0989-8
dc.identifierhttps://repositorio.uchile.cl/handle/2250/168862
dc.description.abstractThis paper is devoted to the study of optimal solutions of symmetric coneprograms by means of the asymptotic behavior of central paths with respect to a broadclass of barrier functions. This class is, for instance, larger than that typically foundin the literature for semidefinite positive programming. In this general framework,we prove the existence and the convergence of primal, dual and primal–dual centralpaths. We are then able to establish concrete characterizations of the limit points ofthese central paths for specific subclasses. Indeed, for the class of barrier functionsdefined at the origin, we prove that the limit point of a primal central path minimizesthe corresponding barrier function over the solution set of the studied symmetric coneprogram. In addition, we show that the limit points of the primal and dual centralpaths lie in the relative interior of the primal and dual solution sets for the case of thelogarithm and modified logarithm barriers.
dc.languageen
dc.publisherSpringer
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceJournal of Optimization Theory and Applications
dc.subjectBarrier functions
dc.subjectCentral paths
dc.subjectEuclidean Jordan algebra
dc.subjectRecession functions
dc.subjectSymmetric cone programming
dc.titleOn the Central Paths in Symmetric Cone Programming
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución