dc.creatorAdly, Samir
dc.creatorHantoute, Abderrahim
dc.creatorLe, Ba Khiet
dc.date.accessioned2019-05-29T13:10:38Z
dc.date.available2019-05-29T13:10:38Z
dc.date.created2019-05-29T13:10:38Z
dc.date.issued2017
dc.identifierJ. Math. Anal. Appl 448 (2017) 691–706
dc.identifier10960813
dc.identifier0022247X
dc.identifier10.1016/j.jmaa.2016.11.025
dc.identifierhttps://repositorio.uchile.cl/handle/2250/168844
dc.description.abstractWe study a precomposition of a maximal monotone operator with linear mappings, which preserves the maximal monotonicity in the setting of reflexive Banach spaces. Instead of using the adjoint of such linear operators, as in the usual precomposition, we consider a more general situation involving operators which satisfy the so-called passivity condition. We also provide similar analysis for the preservation of the maximal cyclic monotonicity. These results are applied to derive existence results for nonsmooth Lur'e dynamical systems.
dc.languageen
dc.publisherAcademic Press-Elsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceJournal of Mathematical Analysis and Applications
dc.subjectDifferential inclusions
dc.subjectLur'e systems
dc.subjectMaximal cyclic monotonicity
dc.subjectMaximal monotonicity
dc.subjectPassivity condition
dc.subjectPrecomposition with linear operators
dc.titleMaximal monotonicity and cyclic monotonicity arising in nonsmooth Lur'e dynamical systems
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución