Artículo
Synergic effect of ozonation and electrochemical methods on oxidation and toxicity reduction: Phenol degradation
Autor
Amado Piña, Deysi; 481734
ROA MORALES, GABRIELA; 121592
BARRERA DIAZ, CARLOS EDUARDO; 25379
Balderas Hernández, Patricia; 120896
ROMERO ROMERO, RUBI; 121454
Martín del Campo López, Eduardo; 265082
NATIVIDAD RANGEL, REYNA; 87755
Amado Piña, Deysi
ROA MORALES, GABRIELA
BARRERA DIAZ, CARLOS EDUARDO
Balderas Hernández, Patricia
ROMERO ROMERO, RUBI
Martín del Campo López, Eduardo
NATIVIDAD RANGEL, REYNA
Institución
Resumen
The degradation of phenol was studied under three chemical environments, ozonation (O3), electrooxidation (EO) and ozonation-electro-oxidation (O3-EO) coupled process. The parent compound concentration was established by UV–Vis spectrophotometry while the by-products were identified by HPLC. This allowed proposing a mechanism of phenol oxidation during the coupled process. This coupled process was found to practically mineralize all phenol (TOC removal = 99.8%) under pH 7.0 ± 0.5 and at a current density of 60 mA cm 2, 0.05 L min 1 flowrate, ozone concentration of 5 ± 0.5 mg L 1. Furthermore, it was found that the coupled process is practically twice faster than the EO process alone to achieve a high degree of mineralization. In this sense, it was concluded that ozone alone only partially mineralizes the phenol molecule and mainly leads to the formation of aliphatic compounds. In addition, the toxicities of phenol and its degradation products were established by using a bioassay with lettuce seeds. It was concluded that, unlike ozonation, the coupled oxidation process not only mineralizes the organic molecule but also completely eliminates the toxicity of the treated phenolic solution.