dc.creator | Romero-Vivas, Eduardo | |
dc.creator | Von Borstel, Fernando D. | |
dc.creator | Villa-Medina, Isaac | |
dc.date.accessioned | 2013-11-26T01:32:41Z | |
dc.date.available | 2013-11-26T01:32:41Z | |
dc.date.created | 2013-11-26T01:32:41Z | |
dc.date.issued | 2013-09-11 | |
dc.identifier | Revista Computación y Sistemas; Vol. 17 No.3 | |
dc.identifier | 1405-5546 | |
dc.identifier | http://www.repositoriodigital.ipn.mx/handle/123456789/17228 | |
dc.description.abstract | Abstract. DNA microarrays are used to simultaneously analyze the expression level of thousands of genes under multiple conditions; however, massive amount of data is generated making its analysis a challenge and an ideal candidate for massive parallel processing. Among the available technologies, the use of General Purpose computation on Graphics Processing Units (GPGPU) is an efficient cost-effective alternative, compared to a Central Processing Unit (CPU). This paper presents an implementation of algorithms using Compute Unified Device Architecture (CUDA) to determine statistical significance in the evaluation of gene expression levels for a microarray hybridization experiment designed and carried out at the Centro de Investigaciones Biológicas del Noroeste S.C. (CIBNOR). The obtained results are compared to traditional implementations. | |
dc.language | en_US | |
dc.publisher | Revista Computación y Sistemas; Vol. 17 No.3 | |
dc.relation | Revista Computación y Sistemas;Vol. 17 No. 3 | |
dc.subject | Keywords. GPU, microarray, CUDA. | |
dc.title | Analysis of Genetic Expression with Microarrays using GPU Implemented Algorithms | |
dc.type | Article | |