dc.creatorRomero-Vivas, Eduardo
dc.creatorVon Borstel, Fernando D.
dc.creatorVilla-Medina, Isaac
dc.date.accessioned2013-11-26T01:32:41Z
dc.date.available2013-11-26T01:32:41Z
dc.date.created2013-11-26T01:32:41Z
dc.date.issued2013-09-11
dc.identifierRevista Computación y Sistemas; Vol. 17 No.3
dc.identifier1405-5546
dc.identifierhttp://www.repositoriodigital.ipn.mx/handle/123456789/17228
dc.description.abstractAbstract. DNA microarrays are used to simultaneously analyze the expression level of thousands of genes under multiple conditions; however, massive amount of data is generated making its analysis a challenge and an ideal candidate for massive parallel processing. Among the available technologies, the use of General Purpose computation on Graphics Processing Units (GPGPU) is an efficient cost-effective alternative, compared to a Central Processing Unit (CPU). This paper presents an implementation of algorithms using Compute Unified Device Architecture (CUDA) to determine statistical significance in the evaluation of gene expression levels for a microarray hybridization experiment designed and carried out at the Centro de Investigaciones Biológicas del Noroeste S.C. (CIBNOR). The obtained results are compared to traditional implementations.
dc.languageen_US
dc.publisherRevista Computación y Sistemas; Vol. 17 No.3
dc.relationRevista Computación y Sistemas;Vol. 17 No. 3
dc.subjectKeywords. GPU, microarray, CUDA.
dc.titleAnalysis of Genetic Expression with Microarrays using GPU Implemented Algorithms
dc.typeArticle


Este ítem pertenece a la siguiente institución