dc.creatorOrtigoza Capetillo, Gerardo Mario
dc.date.accessioned2013-04-19T19:14:56Z
dc.date.available2013-04-19T19:14:56Z
dc.date.created2013-04-19T19:14:56Z
dc.date.issued2010-09-30
dc.identifierRevista Computación y Sistemas; Vol. 14 No.1
dc.identifier1405-5546
dc.identifierhttp://www.repositoriodigital.ipn.mx/handle/123456789/15278
dc.description.abstractAbstract. In this work we investigate some computational aspects of the eigenvalue calculation with edge elements; those include: the importance of the grid generator and node-edge numbering. As the examples show, the sparse structure of the mass and stiffness matrices is highly influenced by the edge numbering. Tetrahedral grid generators are mainly designed for nodal based finite elements so an edge numbering is required. Two different edge numbering schemes are tested with six different grid generators. Significant bandwidth reduction can be obtained by the proper combination of the edge numbering scheme with the grid generator method. Moreover, an ordering algorithm such as the Reverse Cuthill McKee can improve the bandwidth reduction which is necessary to reduce storage requirements.
dc.languageen_US
dc.publisherRevista Computación y Sistemas; Vol. 14 No.1
dc.relationRevista Computación y Sistemas;Vol. 14 No.1
dc.subjectKeywords. Tetrahedral grid generators, edge elements, RCM ordering, generalized eigenproblem.
dc.titleTetrahedral Grid Generators and the Eigenvalue Calculation with Edge Elements
dc.typeArticle


Este ítem pertenece a la siguiente institución