dc.creatorBekios Calfa, Juan
dc.creatorBuenaposada, José M.
dc.creatorBaumela, Luis
dc.date.accessioned2013-04-10T00:03:34Z
dc.date.available2013-04-10T00:03:34Z
dc.date.created2013-04-10T00:03:34Z
dc.date.issued2011-06-06
dc.identifierRevista Computación y Sistemas; Vol. 14 No. 4
dc.identifier1405-5546
dc.identifierhttp://www.repositoriodigital.ipn.mx/handle/123456789/14981
dc.description.abstractAbstract. This paper presents a solution to the problem of recognizing the gender of a human face from an image. We adopt a holistic approach by using the cropped and normalized texture of the face as input to a Naïve Bayes classifier. First it is introduced the Class-Conditional Probabilistic Principal Component Analysis (CC-PPCA) technique to reduce the dimensionality of the classification attribute vector and enforce the independence assumption of the classifier. This new approach has the desirable property of a simple parametric model for the marginals. Moreover this model can be estimated with very few data. In the experiments conducted we show that using CC-PPCA we get 90% classification accuracy, which is similar result to the best in the literature. The proposed method is very simple to train and implement.
dc.languageen_US
dc.publisherRevista Computación y Sistemas; Vol. 14 No. 4
dc.relationRevista Computación y Sistemas;Vol. 14 No. 4
dc.subjectKeywords: Gender classification, face analysis, class conditional PPCA.
dc.titleClass-Conditional Probabilistic Principal Component Analysis: Application to Gender Recognition
dc.typeArticle


Este ítem pertenece a la siguiente institución