Tesis
Simetria de Lie de uma equação KdV com dispersão não-linear
Fecha
2015-04-24Registro en:
Autor
Sousa, Poliane Lima de
Institución
Resumen
The Rosenau-Hyman, or K(m, n), equations are a generalized version of the Korteweg-de
Vries (KdV) equation where the dipersive term is non-linear. Such partial differential
equations not always have a specific method by which can be solved, besides the solutions
are not always analytical. The Lie symmetry method was applied to look for solutions of
these equations. This method consists in finding the most general symmetry group of the
equation, wherewith the solution can be found. It was found an expression to the solution
and to some particular cases. It was shown that in the case K(2, 2) a new kind of solution,
called compacton, with peculiar properties is found.